HuggingFace Accelerate v1.3.0发布:全面支持PyTorch 2.0及分布式编译优化
HuggingFace Accelerate是一个旨在简化PyTorch分布式训练流程的库,它能够让开发者以最少的代码修改实现单机多卡或多机训练。最新发布的v1.3.0版本标志着该项目的一个重要里程碑,不仅将PyTorch 2.0设为最低要求版本,还引入了一系列性能优化和功能改进。
PyTorch 2.0成为最低要求
随着PyTorch 2.0发布已近两年,Accelerate v1.3.0正式将其设为最低版本要求。这一变化反映了深度学习生态系统的持续演进,也意味着用户现在可以充分利用PyTorch 2.0带来的各种性能优化和新特性。值得注意的是,这一变更与HuggingFace Transformers库的最新版本保持了一致,确保了生态系统的兼容性。
核心功能增强
分布式编译模型支持
新版本为unwrap_model和extract_model_from_parallel函数新增了keep_torch_compile参数,这一改进特别针对分布式编译模型场景。这意味着开发者现在可以更灵活地处理经过torch.compile优化的模型,在分布式训练环境中保持编译后的性能优势。
设备无关性改进
开发团队对代码库进行了多处优化,使其更加设备无关。例如:
- 移除了硬编码的CUDA依赖
- 为NPU设备修复了
load_state_dict功能 - 使用
torch.xpu.mem_get_info替代原有实现,更好地支持Intel XPU设备
这些改进使得Accelerate能够在更广泛的硬件平台上稳定运行,包括但不限于NVIDIA GPU、Intel XPU和华为NPU等。
大模型训练优化
自动设备映射改进
修正了_init_infer_auto_device_map函数的返回语句,这一看似微小的改动实际上对大模型分布式训练的设备分配逻辑有着重要影响。现在,当模型参数被绑定(tied parameters)时,系统能够更准确地识别这些参数属于哪个模块的子项,从而做出更合理的设备分配决策。
内存卸载增强
针对使用TorchAO 0.7.0及以上版本的情况,修复了内存卸载相关的问题。同时,测试用例也得到了相应更新,确保生成任务中的内存卸载功能在各种场景下都能正常工作。
数据加载器兼容性提升
考虑到不同版本的torchdata可能存在API差异,新版本增加了对in_order参数的版本检查。这一改进防止了在不支持的torchdata版本上尝试使用该参数导致的错误。此外,代码现在会先检查in_order是否存在于kwargs中再尝试移除它,进一步增强了鲁棒性。
文档与示例完善
技术文档中修正了"backoff_filter"到"backoff_factor"的拼写错误,同时新增了关于如何在梯度累积场景下处理交叉熵损失的实用示例。这些改进虽然看似微小,但对于用户正确理解和使用库功能至关重要。
TPU训练简化
对于使用Google TPU的用户,新版本移除了xla.spawn中的nprocs参数,简化了TPU训练的启动流程。这一变更使得TPU的使用体验更加接近其他硬件平台。
总结
HuggingFace Accelerate v1.3.0通过全面支持PyTorch 2.0、增强设备兼容性、优化大模型训练流程等一系列改进,进一步巩固了其作为PyTorch分布式训练首选工具库的地位。无论是对于研究大规模语言模型的团队,还是需要跨多种硬件平台部署训练任务的企业,这个版本都提供了更稳定、更高效的解决方案。随着深度学习模型规模的不断扩大和硬件生态的日益多样化,Accelerate这类抽象工具库的价值将愈发凸显。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00