Milvus项目中索引节点和查询节点的内存优化实践
2025-05-04 05:30:12作者:冯梦姬Eddie
背景介绍
在分布式向量数据库Milvus的实际应用中,当对分区键集合进行高并发数据操作语言(DML)请求时,系统可能会出现索引节点(indexNode)和查询节点(queryNode)因内存不足而被强制终止(OOMKilled)的情况。这一问题在Milvus 2.5版本中尤为突出,特别是在处理大规模数据集时。
问题现象
在典型的测试环境中,当用户执行以下操作序列时会出现内存问题:
- 创建一个包含整型主键、浮点向量和JSON字段的集合
- 建立向量索引
- 插入3000万条数据并执行刷新操作
- 重新建立索引并加载数据
- 同时执行搜索、更新和刷新操作
在此场景下,索引节点和所有查询节点都会因内存不足而被系统终止。监控数据显示,节点的内存使用量会迅速攀升直至超出限制。
技术分析
内存消耗机制
在Milvus架构中,索引节点负责处理向量索引的构建和维护,而查询节点则负责处理搜索请求。当面对高并发DML操作时,这两个节点会面临以下内存挑战:
- 索引构建内存峰值:构建向量索引是一个内存密集型操作,特别是对于大规模数据集
- 查询处理内存累积:并发查询会产生大量中间结果,这些结果需要在内存中暂存
- 数据变更缓冲:更新操作需要维护数据的一致性,会产生额外的内存开销
现有解决方案
Milvus社区已经针对类似问题提出了几种解决方案:
- 分段归约优化:改进reduce函数的实现,使其能够分阶段处理查询结果,避免一次性加载过多数据到内存
- 内存保护机制:通过配置内存阈值,在内存使用接近上限时主动拒绝或限流DML请求
- 磁盘溢出机制:将部分中间结果暂存到磁盘,减轻内存压力
实践验证
通过升级到包含特定修复的版本(XuanYang-cn-goose-561a708-20250325),测试结果显示:
- 对于1GB和4GB大小的数据段,索引节点不再出现内存不足的情况
- 系统稳定性得到显著提升,能够更好地应对高并发场景
最佳实践建议
基于实际经验,建议Milvus用户在高并发DML场景下采取以下措施:
- 合理配置资源:根据数据规模和工作负载特点,为索引节点和查询节点分配足够的内存资源
- 版本升级:及时更新到包含内存优化修复的版本
- 监控预警:建立完善的内存监控机制,及时发现潜在的内存问题
- 分批处理:对于大规模数据操作,考虑采用分批处理策略,避免一次性操作过多数据
总结
Milvus作为一款高性能向量数据库,在处理大规模数据和高并发请求时面临着内存管理的挑战。通过社区的努力和持续优化,特别是针对索引节点和查询节点的内存使用改进,系统稳定性和性能得到了显著提升。用户在实际部署时应充分了解这些优化措施,并根据自身业务特点进行合理配置,以获得最佳的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
409
仓颉编程语言运行时与标准库。
Cangjie
130
422