Milvus项目中索引节点和查询节点的内存优化实践
2025-05-04 22:25:37作者:冯梦姬Eddie
背景介绍
在分布式向量数据库Milvus的实际应用中,当对分区键集合进行高并发数据操作语言(DML)请求时,系统可能会出现索引节点(indexNode)和查询节点(queryNode)因内存不足而被强制终止(OOMKilled)的情况。这一问题在Milvus 2.5版本中尤为突出,特别是在处理大规模数据集时。
问题现象
在典型的测试环境中,当用户执行以下操作序列时会出现内存问题:
- 创建一个包含整型主键、浮点向量和JSON字段的集合
- 建立向量索引
- 插入3000万条数据并执行刷新操作
- 重新建立索引并加载数据
- 同时执行搜索、更新和刷新操作
在此场景下,索引节点和所有查询节点都会因内存不足而被系统终止。监控数据显示,节点的内存使用量会迅速攀升直至超出限制。
技术分析
内存消耗机制
在Milvus架构中,索引节点负责处理向量索引的构建和维护,而查询节点则负责处理搜索请求。当面对高并发DML操作时,这两个节点会面临以下内存挑战:
- 索引构建内存峰值:构建向量索引是一个内存密集型操作,特别是对于大规模数据集
- 查询处理内存累积:并发查询会产生大量中间结果,这些结果需要在内存中暂存
- 数据变更缓冲:更新操作需要维护数据的一致性,会产生额外的内存开销
现有解决方案
Milvus社区已经针对类似问题提出了几种解决方案:
- 分段归约优化:改进reduce函数的实现,使其能够分阶段处理查询结果,避免一次性加载过多数据到内存
- 内存保护机制:通过配置内存阈值,在内存使用接近上限时主动拒绝或限流DML请求
- 磁盘溢出机制:将部分中间结果暂存到磁盘,减轻内存压力
实践验证
通过升级到包含特定修复的版本(XuanYang-cn-goose-561a708-20250325),测试结果显示:
- 对于1GB和4GB大小的数据段,索引节点不再出现内存不足的情况
- 系统稳定性得到显著提升,能够更好地应对高并发场景
最佳实践建议
基于实际经验,建议Milvus用户在高并发DML场景下采取以下措施:
- 合理配置资源:根据数据规模和工作负载特点,为索引节点和查询节点分配足够的内存资源
- 版本升级:及时更新到包含内存优化修复的版本
- 监控预警:建立完善的内存监控机制,及时发现潜在的内存问题
- 分批处理:对于大规模数据操作,考虑采用分批处理策略,避免一次性操作过多数据
总结
Milvus作为一款高性能向量数据库,在处理大规模数据和高并发请求时面临着内存管理的挑战。通过社区的努力和持续优化,特别是针对索引节点和查询节点的内存使用改进,系统稳定性和性能得到了显著提升。用户在实际部署时应充分了解这些优化措施,并根据自身业务特点进行合理配置,以获得最佳的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287