ColPali项目中ColQwen2.5模型的训练配置解析
在ColPali项目的最新版本中,ColQwen2.5模型的训练实现引起了开发者社区的广泛关注。本文将深入解析该模型的训练配置细节,帮助开发者更好地理解其实现原理。
硬件资源配置
ColQwen2.5模型的训练采用了4块H100 GPU进行分布式训练。值得注意的是,训练脚本中设置的每设备批量大小(per_device_train_batch_size)为64,这意味着在4块GPU上的总批量大小将达到256。这种配置充分利用了现代GPU的高性能计算能力,同时保持了合理的显存占用。
训练数据与损失函数
与早期版本不同,ColQwen2.5的训练采用了ColbertPairwiseCELoss损失函数,这是一种不依赖困难负样本(hard negatives)的训练策略。这种设计选择简化了数据准备过程,同时仍能保持模型的检索性能。
在实现细节上,ColbertPairwiseCELoss通过计算查询与正文档之间的相似度得分,并与负文档进行对比,优化模型区分相关与不相关内容的能力。这种损失函数特别适合信息检索任务,能够有效学习文档的密集表示。
版本兼容性注意事项
开发者需要注意,当前主分支中的损失函数实现与ColQwen2.5训练时使用的版本存在差异。为了确保完全复现原始训练结果,建议查找4个月前的特定提交版本,该版本包含了与ColQwen2.5训练完全一致的损失函数实现。
配置文件的获取
每个已发布模型都附带了完整的训练配置文件(training_config.yml),位于模型文件目录中。这些配置文件详细记录了训练过程中的所有超参数设置,包括学习率、优化器选择、正则化策略等关键信息,为开发者提供了完整的复现依据。
通过理解这些训练配置细节,开发者可以更好地应用ColQwen2.5模型,或者基于此架构进行进一步的定制开发。这种透明化的配置分享也体现了开源社区的合作精神,有助于推动检索模型技术的共同进步。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00