Terraform Provider for Google新增Classic ALB迁移功能支持
2025-07-01 17:23:11作者:伍希望
在云计算负载均衡领域,Google Cloud Platform近期推出了Classic ALB迁移功能,允许用户将传统的Classic负载均衡逐步迁移到新一代的External Managed负载均衡服务。作为基础设施即代码的重要工具,Terraform的Google Provider也及时跟进,在最新版本中为这一功能提供了原生支持。
功能背景与价值
Classic ALB迁移功能主要解决了传统负载均衡向现代化架构过渡的难题。通过该功能,用户可以:
- 实现流量的渐进式迁移,避免一次性切换带来的风险
- 精确控制迁移比例,从1%到100%逐步增加
- 在迁移过程中持续监控新系统的稳定性
- 随时回滚到原有架构
这种"金丝雀发布"式的迁移方式大大降低了生产环境变更的风险,特别适合对可用性要求高的关键业务系统。
Terraform实现细节
在Terraform配置中,这一功能主要通过两个核心资源实现:
1. 后端服务配置
在google_compute_backend_service资源中新增了两个参数:
- external_managed_migration_state:定义迁移状态,如"TEST_BY_PERCENTAGE"表示按百分比测试
- external_managed_migration_testing_percentage:设置测试流量的百分比
resource "google_compute_backend_service" "example" {
name = "migration-backend"
external_managed_migration_state = "TEST_BY_PERCENTAGE"
external_managed_migration_testing_percentage = 30
}
2. 转发规则配置
在google_compute_global_forwarding_rule资源中也有对应的迁移参数:
- external_managed_backend_bucket_migration_state
- external_managed_backend_bucket_migration_testing_percentage
resource "google_compute_global_forwarding_rule" "example" {
name = "migration-rule"
port_range = "80"
load_balancing_scheme = "EXTERNAL"
external_managed_backend_bucket_migration_state = "TEST_BY_PERCENTAGE"
external_managed_backend_bucket_migration_testing_percentage = 30
}
最佳实践建议
-
渐进式迁移策略:建议从较小比例(如5-10%)开始,观察系统行为后再逐步增加
-
监控与告警:迁移过程中应密切监控以下指标:
- 请求成功率
- 延迟变化
- 后端实例负载情况
-
回滚准备:始终保持回退到Classic LB的能力,直到新系统完全验证通过
-
环境一致性:确保测试环境与生产环境配置一致,避免环境差异导致的迁移问题
技术实现原理
在底层实现上,Google Cloud通过在负载均衡层注入特殊标记来实现流量分流。当请求到达时,系统会根据配置的百分比随机决定:
- 将请求路由到新External Managed LB
- 或继续使用原有Classic LB路径
这种实现方式保证了:
- 分流决策的随机性和均匀性
- 单个用户会话的连续性
- 极低的分流开销
总结
Terraform Provider for Google对Classic ALB迁移功能的支持,使得用户能够以基础设施即代码的方式管理这一关键迁移过程。通过声明式配置,团队可以:
- 版本化迁移配置
- 自动化迁移流程
- 与CI/CD管道集成
- 实现可重复的迁移测试
这一功能的加入进一步丰富了Google Cloud负载均衡的管理能力,为现代化架构演进提供了更平滑的过渡路径。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869