Terraform Provider for Google新增Classic ALB迁移功能支持
2025-07-01 17:23:11作者:伍希望
在云计算负载均衡领域,Google Cloud Platform近期推出了Classic ALB迁移功能,允许用户将传统的Classic负载均衡逐步迁移到新一代的External Managed负载均衡服务。作为基础设施即代码的重要工具,Terraform的Google Provider也及时跟进,在最新版本中为这一功能提供了原生支持。
功能背景与价值
Classic ALB迁移功能主要解决了传统负载均衡向现代化架构过渡的难题。通过该功能,用户可以:
- 实现流量的渐进式迁移,避免一次性切换带来的风险
- 精确控制迁移比例,从1%到100%逐步增加
- 在迁移过程中持续监控新系统的稳定性
- 随时回滚到原有架构
这种"金丝雀发布"式的迁移方式大大降低了生产环境变更的风险,特别适合对可用性要求高的关键业务系统。
Terraform实现细节
在Terraform配置中,这一功能主要通过两个核心资源实现:
1. 后端服务配置
在google_compute_backend_service资源中新增了两个参数:
- external_managed_migration_state:定义迁移状态,如"TEST_BY_PERCENTAGE"表示按百分比测试
- external_managed_migration_testing_percentage:设置测试流量的百分比
resource "google_compute_backend_service" "example" {
name = "migration-backend"
external_managed_migration_state = "TEST_BY_PERCENTAGE"
external_managed_migration_testing_percentage = 30
}
2. 转发规则配置
在google_compute_global_forwarding_rule资源中也有对应的迁移参数:
- external_managed_backend_bucket_migration_state
- external_managed_backend_bucket_migration_testing_percentage
resource "google_compute_global_forwarding_rule" "example" {
name = "migration-rule"
port_range = "80"
load_balancing_scheme = "EXTERNAL"
external_managed_backend_bucket_migration_state = "TEST_BY_PERCENTAGE"
external_managed_backend_bucket_migration_testing_percentage = 30
}
最佳实践建议
-
渐进式迁移策略:建议从较小比例(如5-10%)开始,观察系统行为后再逐步增加
-
监控与告警:迁移过程中应密切监控以下指标:
- 请求成功率
- 延迟变化
- 后端实例负载情况
-
回滚准备:始终保持回退到Classic LB的能力,直到新系统完全验证通过
-
环境一致性:确保测试环境与生产环境配置一致,避免环境差异导致的迁移问题
技术实现原理
在底层实现上,Google Cloud通过在负载均衡层注入特殊标记来实现流量分流。当请求到达时,系统会根据配置的百分比随机决定:
- 将请求路由到新External Managed LB
- 或继续使用原有Classic LB路径
这种实现方式保证了:
- 分流决策的随机性和均匀性
- 单个用户会话的连续性
- 极低的分流开销
总结
Terraform Provider for Google对Classic ALB迁移功能的支持,使得用户能够以基础设施即代码的方式管理这一关键迁移过程。通过声明式配置,团队可以:
- 版本化迁移配置
- 自动化迁移流程
- 与CI/CD管道集成
- 实现可重复的迁移测试
这一功能的加入进一步丰富了Google Cloud负载均衡的管理能力,为现代化架构演进提供了更平滑的过渡路径。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178