深入理解SentenceTransformers中的MultipleNegativesSymmetricRankingLoss
2025-05-13 23:12:54作者:谭伦延
概述
MultipleNegativesSymmetricRankingLoss是SentenceTransformers库中一种重要的对比学习损失函数,它在MultipleNegativesRankingLoss基础上增加了对称性损失项,能够更好地学习文本对之间的双向关系。本文将深入解析这一损失函数的实现原理和工作机制。
损失函数设计原理
MultipleNegativesSymmetricRankingLoss的核心思想是同时优化两个方向的匹配:
- 给定锚点文本(anchor)时,能够从候选列表中找出正确的正样本
- 给定正样本时,能够从锚点文本列表中找出对应的原始锚点
这种双向优化特别适合问答对、查询-文档等需要双向匹配的场景。相比单向匹配的MultipleNegativesRankingLoss,它能学习到更鲁棒的嵌入表示。
实现细节分析
输入数据处理
当使用SentenceTransformers进行训练时,数据通常以InputExample的形式组织。例如batch_size=32时,输入数据可以表示为:
[
InputExample(texts=['锚点文本1', '正样本1']),
InputExample(texts=['锚点文本2', '正样本2']),
...
InputExample(texts=['锚点文本32', '正样本32'])
]
前向传播过程
在前向传播时,模型会:
- 分别计算锚点文本和正样本的嵌入表示
- reps[0]形状为(batch_size, embedding_dim),包含所有锚点文本的嵌入
- reps[1]形状同样为(batch_size, embedding_dim),包含所有正样本的嵌入
相似度计算
模型会计算锚点文本与正样本之间的相似度矩阵:
scores = similarity_fct(anchor, candidates) * scale
得到的scores矩阵形状为(batch_size, batch_size),其中每个元素[i,j]表示第i个锚点文本与第j个正样本的相似度得分。
双向损失计算
损失函数包含两个部分:
- 前向损失:使每个锚点文本与其对应的正样本相似度最大化
- 反向损失:使每个正样本与其对应的锚点文本相似度最大化
具体实现中:
- 前向损失直接使用整个相似度矩阵
- 反向损失使用相似度矩阵的转置
- 最终损失是两者的平均值
训练动态分析
在训练过程中,模型会逐渐优化使得相似度矩阵的对角线元素(正确匹配对)的值增大,而非对角线元素(错误匹配对)的值减小。这种优化通过交叉熵损失函数实现,迫使模型学习区分正负样本的能力。
应用场景
这种对称性损失特别适用于以下场景:
- 问答系统:同时优化问题找答案和答案找问题
- 检索系统:优化查询找文档和文档找查询
- 对话系统:优化用户话语找系统回复和系统回复找用户话语
总结
MultipleNegativesSymmetricRankingLoss通过引入双向匹配优化,相比传统单向对比学习损失能够学习到更具判别力的文本表示。理解其内部实现机制有助于开发者更好地应用和调整这一损失函数,在各种NLP匹配任务中获得更好的性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492