深入理解SentenceTransformers中的MultipleNegativesSymmetricRankingLoss
2025-05-13 11:24:24作者:谭伦延
概述
MultipleNegativesSymmetricRankingLoss是SentenceTransformers库中一种重要的对比学习损失函数,它在MultipleNegativesRankingLoss基础上增加了对称性损失项,能够更好地学习文本对之间的双向关系。本文将深入解析这一损失函数的实现原理和工作机制。
损失函数设计原理
MultipleNegativesSymmetricRankingLoss的核心思想是同时优化两个方向的匹配:
- 给定锚点文本(anchor)时,能够从候选列表中找出正确的正样本
- 给定正样本时,能够从锚点文本列表中找出对应的原始锚点
这种双向优化特别适合问答对、查询-文档等需要双向匹配的场景。相比单向匹配的MultipleNegativesRankingLoss,它能学习到更鲁棒的嵌入表示。
实现细节分析
输入数据处理
当使用SentenceTransformers进行训练时,数据通常以InputExample的形式组织。例如batch_size=32时,输入数据可以表示为:
[
InputExample(texts=['锚点文本1', '正样本1']),
InputExample(texts=['锚点文本2', '正样本2']),
...
InputExample(texts=['锚点文本32', '正样本32'])
]
前向传播过程
在前向传播时,模型会:
- 分别计算锚点文本和正样本的嵌入表示
- reps[0]形状为(batch_size, embedding_dim),包含所有锚点文本的嵌入
- reps[1]形状同样为(batch_size, embedding_dim),包含所有正样本的嵌入
相似度计算
模型会计算锚点文本与正样本之间的相似度矩阵:
scores = similarity_fct(anchor, candidates) * scale
得到的scores矩阵形状为(batch_size, batch_size),其中每个元素[i,j]表示第i个锚点文本与第j个正样本的相似度得分。
双向损失计算
损失函数包含两个部分:
- 前向损失:使每个锚点文本与其对应的正样本相似度最大化
- 反向损失:使每个正样本与其对应的锚点文本相似度最大化
具体实现中:
- 前向损失直接使用整个相似度矩阵
- 反向损失使用相似度矩阵的转置
- 最终损失是两者的平均值
训练动态分析
在训练过程中,模型会逐渐优化使得相似度矩阵的对角线元素(正确匹配对)的值增大,而非对角线元素(错误匹配对)的值减小。这种优化通过交叉熵损失函数实现,迫使模型学习区分正负样本的能力。
应用场景
这种对称性损失特别适用于以下场景:
- 问答系统:同时优化问题找答案和答案找问题
- 检索系统:优化查询找文档和文档找查询
- 对话系统:优化用户话语找系统回复和系统回复找用户话语
总结
MultipleNegativesSymmetricRankingLoss通过引入双向匹配优化,相比传统单向对比学习损失能够学习到更具判别力的文本表示。理解其内部实现机制有助于开发者更好地应用和调整这一损失函数,在各种NLP匹配任务中获得更好的性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178