VISSL 开源项目教程
2024-09-19 16:15:14作者:何举烈Damon
1. 项目介绍
VISSL(Vision SSL)是 Facebook AI Research 开发的一个用于图像自监督学习的 PyTorch 库。它旨在加速自监督学习研究周期,从设计新的自监督任务到评估学习到的表示。VISSL 提供了可扩展、模块化和可复制的组件,支持多种最先进的自监督学习方法,如 SwAV、SimCLR、MoCo 等。
主要特点
- 可复制的 SOTA 实现:支持多种现有的最先进自监督学习方法。
- 基准测试套件:包括线性图像分类、全微调、半监督基准、最近邻基准和目标检测等任务。
- 易用性:基于 Hydra 的 YAML 配置系统,易于使用。
- 模块化:易于设计新任务并重用现有组件。
- 可扩展性:支持单 GPU、多 GPU 和多节点训练。
2. 项目快速启动
安装
首先,确保你已经安装了 PyTorch。然后,按照以下步骤安装 VISSL:
# 克隆仓库
git clone https://github.com/facebookresearch/vissl.git
cd vissl
# 安装依赖
pip install -r requirements.txt
# 安装 VISSL
python setup.py install
快速启动示例
以下是一个简单的示例,展示如何使用 VISSL 进行自监督学习训练:
import torch
from vissl.models import build_model
from vissl.config import AttrDict
from vissl.trainer import SelfSupervisedTrainer
# 配置模型和训练参数
config = AttrDict({
'MODEL': {
'TRUNK': 'resnet',
'HEAD': 'mlp',
},
'OPTIMIZER': {
'name': 'sgd',
'lr': 0.01,
},
'DATA': {
'TRAIN': {
'BATCHSIZE_PER_REPLICA': 32,
'DATA_PATHS': ['path/to/your/data'],
},
},
})
# 构建模型
model = build_model(config.MODEL)
# 初始化训练器
trainer = SelfSupervisedTrainer(config, model)
# 开始训练
trainer.train()
3. 应用案例和最佳实践
应用案例
VISSL 可以应用于多种计算机视觉任务,包括但不限于:
- 图像分类:使用自监督学习预训练的模型进行图像分类。
- 目标检测:在自监督学习预训练的模型基础上进行目标检测任务。
- 图像检索:利用自监督学习模型提取图像特征,进行图像检索。
最佳实践
- 数据增强:使用 VISSL 提供的多种数据增强方法,如 AugLy,以提高模型的泛化能力。
- 多 GPU 训练:利用 VISSL 的多 GPU 和多节点训练支持,加速大规模训练。
- 模型微调:在自监督学习预训练的模型基础上,进行特定任务的微调,以提高任务性能。
4. 典型生态项目
相关项目
- PyTorch:VISSL 基于 PyTorch 构建,PyTorch 是一个广泛使用的深度学习框架。
- Hydra:VISSL 使用 Hydra 进行配置管理,Hydra 是一个用于复杂应用程序的配置管理工具。
- ClassyVision:ClassyVision 是一个用于大规模图像和视频分类的 PyTorch 库,与 VISSL 有很好的集成。
社区支持
- GitHub 仓库:facebookresearch/vissl
- 官方文档:VISSL 官方文档
通过以上内容,你可以快速了解并开始使用 VISSL 进行自监督学习研究。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
207
220
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
287
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
215
仓颉编程语言运行时与标准库。
Cangjie
134
873