MTEB项目中的中文嵌入模型元数据缺失问题分析
2025-07-01 03:35:00作者:平淮齐Percy
背景概述
MTEB(Massive Text Embedding Benchmark)作为文本嵌入模型评估的重要基准平台,近期发现其对中国特定语言模型的支持存在不足。项目维护团队在检查过程中,识别出大量中文嵌入模型缺乏必要的ModelMeta元数据对象,这直接影响了这些模型在基准测试中的表现和可比较性。
问题模型分类
中文专用模型缺失情况
项目团队最初整理出一份包含41个中文专用模型的列表,这些模型虽然在原始C-MTEB测试中已有结果,但尚未集成到MTEB库中。经过深入分析和筛选,团队排除了以下类型模型:
- 可疑的微调版本
- 蒸馏版本
- 量化版本
- 缺乏文档说明的模型
最终确定需要实现的核心中文模型包括:
- DMetaSoul系列中文嵌入模型
- Stella系列不同规模的变体
- Jina中文嵌入模型
- Moka的M3E系列
- Piccolo系列中文模型
- Text2Vec中文实现
- 其他特定用途的中文嵌入模型
多语言模型缺失情况
同时发现的还有12个多语言模型同样缺少元数据定义,这些模型理论上应支持中文处理能力。经过评估,团队优先考虑了具有广泛影响力的多语言Sentence Transformers实现。
技术实现进展
项目团队采取了分阶段实施方案:
第一阶段:优先处理BAAI的BGE系列和GTE系列模型,这些模型在中文NLP社区具有较高影响力。实现已通过PR#1805合并入库。
第二阶段:补充Sentence Transformers相关模型,包括:
- distiluse-base-multilingual-cased-v2
- use-cmlm-multilingual 这些实现已通过PR#1814完成。
第三阶段:重点处理Stella系列中文模型,包括多个版本和尺寸的变体。技术团队注意到部分早期版本已过时,决定不纳入支持范围。相关实现通过PR#1824提交。
特殊模型处理
对于Text2Vec系列中文实现,技术团队最初认为需要定制化实现,但后续验证发现可通过标准Sentence Transformers接口支持。这简化了集成过程,同时保证了功能完整性。
项目意义与影响
此次元数据补充工作具有多重价值:
- 提升了MTEB对中文NLP社区的支持度
- 使更多中文嵌入模型能够参与标准化评估
- 为研究人员提供更全面的模型比较基准
- 促进了中文嵌入模型的标准化发展
通过系统化的模型筛选和元数据补充,MTEB项目进一步巩固了其作为多语言文本嵌入评估基准的权威地位,特别加强了对中文语言特性的支持能力。这项工作也为其他语言模型的集成提供了可参考的实施范例。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44