TorchMetrics中的Procrustes对齐实现分析
2025-07-03 15:56:04作者:柏廷章Berta
概述
Procrustes对齐是一种在三维人体姿态估计等领域广泛使用的形状相似性分析方法。本文将深入探讨如何在TorchMetrics中实现这一功能,并分析其技术细节和实现方案。
Procrustes对齐原理
Procrustes分析的核心思想是通过相似变换(旋转、平移和缩放)将一个形状尽可能匹配到另一个形状上。在三维人体姿态估计中,这种方法常用于消除不同姿态间的尺度差异,使得姿态比较更加准确。
现有实现分析
目前TorchMetrics中缺少Procrustes对齐的实现,而SciPy中虽然提供了相关功能,但缺乏对PyTorch张量的原生支持。社区成员提出了一个基于PyTorch的实现方案:
def procrustes(pts1: torch.Tensor, pts2: torch.Tensor):
# 实现细节...
该实现包含以下关键步骤:
- 中心化处理:减去点云均值
- 归一化处理:除以点云的范数
- 奇异值分解:计算最优旋转矩阵
- 尺度估计:计算最优缩放因子
- 平移计算:确定最优平移向量
批量处理扩展
针对现有实现不支持批量处理的问题,社区成员进一步提出了批量处理版本:
def procrustus_batch(data1, data2):
# 批量实现细节...
这个版本通过张量操作实现了对批量数据的并行处理,显著提高了计算效率。与SciPy实现相比,这个版本保持了数值一致性,同时充分利用了PyTorch的GPU加速能力。
应用场景扩展
在三维人体姿态估计中,Procrustes对齐常用于计算以下指标:
- 对齐后的平均关节位置误差(MPJPE)
- 正确分类关键点百分比(PCK)
- 形状相似性度量
实现建议
基于讨论,建议在TorchMetrics中实现Procrustes对齐时考虑以下特性:
- 支持批量处理
- 可选择返回变换矩阵或对齐后的坐标
- 提供与SciPy一致的数值精度
- 完善的错误处理机制
总结
Procrustes对齐是计算机视觉和姿态估计领域的重要工具。在TorchMetrics中实现这一功能将为研究人员和开发者提供便利,特别是在需要与深度学习流程集成的场景中。未来可以考虑将其纳入"形状分析"或"姿态估计"子模块中,并围绕它构建更多相关指标。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134