Bert4Keras: Keras 实现的 Transformers 模型库
2026-01-16 09:30:24作者:董宙帆
1. 项目介绍
Bert4Keras 是由 bojone 开发的一个易于使用的 Keras 库,它提供了对 Google 的著名预训练模型 BERT 和其变种(如 ALBERT)的支持。该项目的目标是使人们能够在 Keras 上更方便地利用这些强大的 NLP(自然语言处理)模型,无需深入理解底层实现细节。
主要特点包括:
- 易用性: Bert4Keras 提供简洁的 API 设计,使得模型加载和微调过程变得简单。
- 兼容性: 兼容 TensorFlow 1.x 和 2.x,以及 Keras 2.x。
- 灵活性: 支持多种预训练模型,且可以扩展至其他基于 Transformer 的模型。
2. 项目快速启动
首先确保已安装 TensorFlow 和 Keras,接着安装 Bert4Keras:
pip install bert4keras
2.1 下载预训练模型权重
使用以下命令下载 BERT 基础模型权重:
!wget https://storage.googleapis.com/bert_models/2018_10_18/chinese_L-12_H-768_A-12.zip
!unzip chinese_L-12_H-768_A-12.zip
2.2 构建模型并加载权重
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
# 初始化Tokenizer
tokenizer = Tokenizer.from_pretrained('chinese_L-12_H-768_A-12')
# 加载预训练模型
model = build_transformer_model(
config_path='chinese_L-12_H-768_A-12/bert_config.json',
checkpoint_path='chinese_L-12_H-768_A-12/bert_model.ckpt',
vocab_path='chinese_L-12_H-768_A-12/vocab.txt'
)
2.3 进行文本编码
inputs = tokenizer.encode(['这是一个示例文本', '第二个输入示例'])
print(inputs)
2.4 获取模型的输出
outputs = model.predict(inputs)
print(outputs.shape)
3. 应用案例和最佳实践
- 文本分类: 将 BERT 作为特征提取器,然后连接一个全连接层进行分类任务。
- 序列标注: 利用 Keras 的
TimeDistributed层进行词性标注或实体识别。 - 机器翻译: 可以整合 T5 模型(需额外依赖),实现文本到文本的转换任务。
- 知识图谱问答: 通过结合上下文信息,预测缺失的实体或关系。
对于这些实践,建议查看项目文档或 Github 上的示例代码。
4. 典型生态项目
- Kashgari: 一个基于 Keras 的 NLP 任务转型学习框架,它可以利用 Bert4Keras 进行预训练模型的加载和文本分类、标签任务。
- transformers_keras: 类似于 Bert4Keras 的库,但专注于 Hugging Face 的 Transformers 库与 Keras 的集成。
以上是 Bert4Keras 的简要介绍及基本使用方法,更多高级特性及应用场景可查阅项目文档和示例代码。祝你在 NLP 之旅中取得成功!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250