Kysely 项目中的 json_agg 函数支持列引用功能解析
2025-05-19 10:42:20作者:胡唯隽
Kysely 是一个类型安全的 SQL 查询构建器,最近社区讨论了对 PostgreSQL 的 json_agg
函数更完善的支持。本文将深入分析这一功能的实现意义、当前限制以及开发者可以采用的临时解决方案。
json_agg 函数的基本用法
在 PostgreSQL 中,json_agg
是一个强大的聚合函数,它可以将多行数据聚合成一个 JSON 数组。Kysely 目前已经支持了两种基本用法:
- 以表名为参数的用法,返回 JSON 对象数组:
eb.fn.jsonAgg('pet').as('pets')
- 以表达式为参数的用法,同样返回 JSON 对象数组
当前缺失的功能支持
社区发现 Kysely 目前缺少对 json_agg
最基础用法的支持 - 直接引用列名。这种用法在实际开发中非常常见,它应该返回一个基础类型的数组而非对象数组。例如:
eb.fn.jsonAgg('pet.name').as('person_pets')
理想情况下,这应该返回 { person_pets: string[] }
类型的结果,但当前 Kysely 的类型系统无法正确处理这种情况。
技术实现难点分析
实现这一功能面临几个技术挑战:
- 类型系统限制:Kysely 的类型系统需要区分列引用和表引用的不同返回类型
- 左连接处理:当前左连接表在类型系统中被表示为所有列可为空,这在
json_agg
场景下会导致类型不准确 - 子查询聚合:在子查询中使用
json_agg
时,类型推导和实际 SQL 生成存在不一致
开发者临时解决方案
在官方支持完善前,开发者可以采用类型断言作为临时解决方案:
import { RawBuilder, ExtractTypeFromStringReference } from 'kysely'
const result = await db
.selectFrom("person")
.select((eb) => [
eb
.selectFrom("pet")
.whereRef("pet.owner_id", "=", "person.id")
.select(eb => eb.fn.jsonAgg("pet.name" as unknown as "pet") as unknown as RawBuilder<ExtractTypeFromStringReference<DB,"pet","name">[] | null>)
.as("person_pets"),
])
.executeTakeFirstOrThrow()
对于需要确保非空的场景,可以结合 coalesce
函数:
import { sql, RawBuilder, ExtractTypeFromStringReference } from 'kysely'
const result = await db
.selectFrom('person')
.innerJoin('pet', 'pet.owner_id', 'person.id')
.select((eb) =>
eb.fn.coalesce(
(eb.fn.jsonAgg("pet.name" as unknown as "pet") as unknown as RawBuilder<ExtractTypeFromStringReference<Database,"pet","name">[] | null>),
sql<never[]>`'[]'`,
).as('person_pets')
)
.groupBy("person.id")
.executeTakeFirstOrThrow()
未来改进方向
根据社区讨论,Kysely 团队计划从以下几个方向改进:
- 完全支持列引用形式的
json_agg
调用 - 重构左连接表的类型表示方式,可能采用
Pet | null
的形式而非所有列可为空 - 优化子查询聚合场景下的类型推导和 SQL 生成
这些改进将显著提升 Kysely 在处理复杂聚合查询时的类型安全性和开发者体验。
总结
Kysely 作为类型优先的 SQL 查询构建器,对 PostgreSQL 特有功能的支持正在不断完善。json_agg
列引用支持虽然当前存在限制,但开发者可以通过类型断言临时解决。随着未来类型系统的改进,Kysely 将能够更自然地表达各种 SQL 聚合模式,为开发者提供更强大的类型安全保障。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5