Notesnook 搜索功能优化:多关键词联合查询的实现思路
2025-05-20 01:55:43作者:申梦珏Efrain
背景与问题分析
Notesnook 作为一款笔记应用,其搜索功能的用户体验至关重要。在实际使用中,用户经常遇到这样的困扰:当使用多个关键词进行搜索时,系统会分别在标题和内容中独立查找这些关键词,而不是将它们作为一个整体进行联合查询。这导致了一个典型问题:如果部分关键词出现在标题,另一部分出现在内容中,相关笔记就无法出现在搜索结果中。
原有机制解析
原搜索机制采用简单的布尔逻辑处理多关键词查询:
- 默认情况下,多个关键词之间采用 AND 关系
- 关键词在标题和内容中分别独立匹配
- 不支持跨字段的联合匹配(即不能标题匹配部分关键词,内容匹配另一部分)
这种设计虽然实现简单,但限制了搜索的灵活性和准确性,特别是在处理复杂查询场景时表现不佳。
技术优化方案
经过深入分析,开发团队提出了以下优化方案:
1. 搜索策略调整
- 对标题和内容分别执行搜索
- 合并搜索结果时,对匹配度进行加权计算
- 同时在标题和内容中找到匹配项的笔记将获得更高的排名
2. 查询语法增强
- 支持显式的布尔运算符(AND/OR)
- 引入字段限定符(如
title:和content:) - 支持精确短语搜索(使用双引号)
3. 匹配度计算优化
- 为每个匹配结果计算相关性分数(rank)
- 当笔记同时在标题和内容中匹配时,合并两者的分数
- 确保更相关的结果排在前面
实际效果展示
优化后的搜索功能表现如下:
-
基本搜索场景
- 搜索
note:返回所有包含该词的笔记 - 搜索
wonderful OR note:返回包含任一词的笔记 - 搜索
wonderful note:仅返回同时包含两个词的笔记
- 搜索
-
跨字段搜索场景
- 若笔记A标题含"Hello world",内容含"something"
- 笔记B标题含"Another note",内容含"This is something content"
- 搜索
world OR something content:返回两篇笔记 - 搜索
world:仅返回笔记A
-
短语搜索
- 使用双引号包裹短语(如
"some long phrase") - 系统将精确匹配该短语序列(无论出现在标题还是内容中)
- 使用双引号包裹短语(如
未来发展方向
虽然当前优化已显著改善搜索体验,但仍有进一步扩展的空间:
-
支持更复杂的查询语法
- 允许用户指定默认布尔关系(AND/OR)
- 实现字段限定搜索(如
title:abc OR content:dgf)
-
引入高级搜索功能
- 支持通配符和模糊匹配
- 添加日期范围等元数据过滤条件
-
优化性能表现
- 对大型笔记库的搜索效率优化
- 增量索引更新机制
总结
Notesnook 通过本次搜索功能优化,显著提升了多关键词查询的准确性和用户体验。新的搜索机制不仅解决了原有跨字段匹配的问题,还为用户提供了更丰富的查询方式。这种基于实际使用场景的持续优化,体现了 Notesnook 对产品细节的关注和对用户需求的深入理解。
随着后续功能的不断完善,Notesnook 的搜索能力将变得更加强大和智能,为用户提供更加高效的信息检索体验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350