在PyTorch-labs/ao项目中实现返回多张量的自定义算子
2025-07-05 16:55:54作者:田桥桑Industrious
在PyTorch生态系统中,PyTorch-labs/ao项目为开发者提供了实现自定义算子的能力。本文将深入探讨如何在该项目中实现一个能够返回多个张量的自定义算子,并确保其与编译流程兼容。
自定义算子的基本结构
自定义算子的实现需要包含两个核心部分:形式化描述和形状元信息函数。形式化描述定义了算子的输入输出签名,而形状元信息函数则负责推导输出张量的形状。
多输出算子的实现方法
对于需要返回多个张量的算子,我们需要在形式化描述中明确指定多个输出。以下是一个典型的多输出算子实现示例:
@custom_op("mylib::multi_output_op")
def multi_output_op(x: Tensor) -> (Tensor, Tensor):
# 算子实现逻辑
output1 = x * 2
output2 = x + 3
return output1, output2
形状推导函数的实现
形状推导函数需要为每个输出张量提供形状推导逻辑。PyTorch要求形状函数必须能够静态推导出输出形状:
@multi_output_op.register_meta
def multi_output_op_meta(x):
# 假设两个输出与输入形状相同
return x.clone(), x.clone()
编译兼容性考虑
为确保自定义算子与编译流程兼容,开发者需要注意以下几点:
- 静态形状推导:形状函数必须能够在编译时确定输出形状
- 类型一致性:所有输出张量必须保持与输入相同的dtype和设备类型
- 自动微分支持:如需支持自动微分,需要实现相应的反向传播函数
实际应用建议
在实际项目中实现多输出自定义算子时,建议:
- 明确每个输出张量的语义含义
- 保持输出张量间的形状关系清晰可预测
- 为算子编写详尽的文档说明
- 添加适当的错误检查机制
通过遵循这些原则,开发者可以在PyTorch-labs/ao项目中高效地实现复杂的多输出自定义算子,同时确保其与PyTorch生态系统的其他组件良好兼容。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210