DynamicData中SortAndBind与Sort().Bind()行为差异分析
问题背景
在DynamicData项目使用过程中,发现SortAndBind操作符与Sort().Bind()组合操作在数据更新时表现出不同的行为。具体表现为当使用TransformWithInlineUpdate进行内联更新时,SortAndBind会导致绑定的集合产生Remove和Add操作,而Sort().Bind()则正确地产生Move操作。
问题现象
当数据源使用TransformWithInlineUpdate进行内联更新时:
-
使用Sort().Bind()组合:
- 变更集传播刷新操作
- 绑定的ReadOnlyObservableCollection产生Move操作
- 选择状态保持稳定
-
使用SortAndBind操作符:
- 变更集同样传播刷新操作
- 但绑定的ReadOnlyObservableCollection产生Remove和Add操作
- 导致UI选择状态丢失
技术分析
变更处理机制差异
DynamicData内部处理排序变更时,Move操作与Remove/Add操作的选择是一个复杂问题。Move操作通常更高效且能保持UI状态,但在某些场景下Remove/Add操作可能更合适。
历史修复
这个问题实际上已经在DynamicData的PR #936中修复,该修复改进了SortAndBind操作符的内部实现,使其能够正确产生Move操作而非Remove/Add操作。这个修复包含在v9.1.1版本中。
绑定适配器机制
DynamicData早期版本使用绑定适配器(Binding Adapter)概念来处理变更应用到目标集合的过程。不同适配器实现可以针对特定场景或UI框架进行优化。SortAndBind的初始实现未包含这一机制,而是倾向于使用Options模式进行配置。
解决方案
升级到DynamicData v9.1.1或更高版本即可解决此问题。新版本中的SortAndBind操作符已改进为与Sort().Bind()保持一致的Move操作行为。
最佳实践建议
- 对于需要保持UI选择状态的场景,确保使用最新版本的DynamicData
- 当使用内联更新(TransformWithInlineUpdate)时,优先考虑使用SortAndBind以获得更好的性能
- 在性能敏感场景中,仍可通过Sort().Bind()组合并配置特定选项来获得更精细的控制
总结
DynamicData库不断优化其内部变更处理机制,v9.1.1版本已解决SortAndBind操作符在处理内联更新时的行为差异问题。开发者现在可以安全地使用SortAndBind操作符,既能获得简洁的API,又能保持与Sort().Bind()相同的行为特性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00