腿式机器人开源项目最佳实践教程
2025-05-17 01:25:49作者:庞眉杨Will
1. 项目介绍
Legged Lab 是一个开源项目,旨在提供一个直接的工作流程,用于训练腿式机器人,特别是使用 IsaacLab 环境。该项目确保了环境逻辑的细粒度定义,同时保持了开发工作的独立性,支持长期更新与维护。Legged Lab 适用于 Unitree G1 和 H1 真实机器人,并且已经过测试。
2. 项目快速启动
在开始之前,请确保您已经安装了 Isaac Lab。以下是基于 Legged Lab 项目的快速启动步骤:
首先,克隆 Legged Lab 仓库:
# 选项 1: 使用 HTTPS
git clone https://github.com/Hellod035/LeggedLab
# 选项 2: 使用 SSH
git clone git@github.com:Hellod035/LeggedLab.git
然后,使用已安装 Isaac Lab 的 Python 解释器,安装 Legged Lab 库:
cd LeggedLab
pip install -e .
验证扩展是否正确安装,运行以下命令:
python legged_lab/scripts/train.py --task=g1_flat --headless --logger=tensorboard --num_envs=64
3. 应用案例和最佳实践
为了更好地使用 Legged Lab,以下是一些应用案例和最佳实践:
- 自定义环境配置:根据需求,调整
train.py脚本中的参数,以定义不同的训练任务和环境配置。 - 多 GPU 和多节点训练:利用 rsl_rl 库,Legged Lab 支持多 GPU 和多节点的强化学习训练。
- 代码组织:借鉴 legged_gym 的代码组织结构和环境定义逻辑,尽可能简化代码。
- 集成 USD 格式资产:为了与 Legged Lab/IsaacLab 兼容,需要将资产转换为 USD 格式。
4. 典型生态项目
以下是与 Legged Lab 相关的一些典型生态项目,这些项目可以为您提供额外的工具和资源:
- IsaacLab:LeggedLab 依赖于 IsaacLab 的组件,简化了腿式机器人训练的复杂性。
- legged_gym:Legged_gym 提供了代码组织和环境定义逻辑的参考。
- Protomotions:该项目是 Legged Lab 的灵感来源,展示了如何使用 IsaacLab 组件创建自定义环境。
通过遵循以上最佳实践,您可以更有效地使用 Legged Lab 来开发腿式机器人应用程序。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882