TensorFlow I/O 项目使用教程
2024-08-07 11:36:59作者:卓炯娓
1. 项目的目录结构及介绍
TensorFlow I/O 项目的目录结构如下:
tensorflow_io/
├── README.md
├── setup.py
├── tensorflow_io/
│ ├── __init__.py
│ ├── audio/
│ ├── bigquery/
│ ├── ...
│ └── video/
└── tests/
├── audio_test.py
├── bigquery_test.py
├── ...
└── video_test.py
目录结构介绍
README.md: 项目介绍文档。setup.py: 项目安装脚本。tensorflow_io/: 核心代码目录。__init__.py: 模块初始化文件。audio/,bigquery/,video/, ...: 各个功能模块的代码。
tests/: 测试代码目录。audio_test.py,bigquery_test.py,video_test.py, ...: 各个功能模块的测试代码。
2. 项目的启动文件介绍
TensorFlow I/O 项目的启动文件主要是 setup.py,它负责项目的安装和依赖管理。
setup.py 文件介绍
from setuptools import setup, find_packages
setup(
name="tensorflow-io",
version="0.37.1",
description="TensorFlow I/O",
author="Google Inc",
packages=find_packages(),
install_requires=[
"tensorflow>=2.0",
],
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
],
)
启动文件功能
- 定义项目名称、版本和描述。
- 指定项目依赖的包。
- 设置项目的分类信息。
3. 项目的配置文件介绍
TensorFlow I/O 项目没有特定的配置文件,其配置主要通过代码中的参数和环境变量来实现。
配置方式
- 代码参数: 在代码中直接设置参数,例如:
import tensorflow_io as tfio audio_io = tfio.IOTensor.from_audio(path) - 环境变量: 通过设置环境变量来配置某些功能,例如:
export TF_IO_CONFIG="some_config_value"
配置示例
假设需要配置音频文件的路径,可以在代码中直接指定:
import tensorflow_io as tfio
path = "path/to/audio/file.wav"
audio_io = tfio.IOTensor.from_audio(path)
通过以上方式,可以灵活地配置和使用 TensorFlow I/O 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328