RAGatouille项目中的自定义负样本微调实践指南
在信息检索和问答系统领域,RAGatouille作为一个基于RAG(Retrieval-Augmented Generation)架构的开源项目,为开发者提供了强大的检索增强生成能力。本文将重点探讨如何在RAGatouille项目中有效地使用自定义的困难负样本(hard negatives)进行模型微调。
自定义负样本的重要性
在检索任务中,困难负样本是指那些与查询语句语义相近但实际上不相关的文档片段。这些样本对于训练检索模型至关重要,因为它们能够帮助模型更好地区分真正相关的文档和那些看似相关但实际上不匹配的文档。通过精心设计的困难负样本,可以显著提升模型的检索精度。
数据准备策略
RAGatouille项目支持两种主要的数据格式来输入自定义的困难负样本:
-
带标签的数据对格式: 这种格式要求将数据组织为
[query, passage, label]的三元组列表。其中:label为1表示该passage是查询的正样本label为0表示该passage是查询的困难负样本
这种格式特别适合那些已经明确标注了正负样本的数据集,开发者可以直接利用现有的标注信息。
-
三元组格式: 这种格式将数据组织为
[query, positive_passage, hard_negative_passage]的三元组列表。每个查询对应一个正样本和一个困难负样本,这种结构更直观地反映了检索任务中样本之间的关系。
微调配置要点
在使用自定义困难负样本进行微调时,需要特别注意以下配置参数:
pairs_with_labels:当设置为True时,表示输入数据采用带标签的数据对格式num_new_negatives:应设置为0,表示不使用自动挖掘的新负样本mine_hard_negatives:应设置为False,避免与自定义负样本产生冲突
实践建议
-
样本平衡:确保正样本和负样本的数量保持合理比例,通常1:1到1:10都是常见的选择。
-
样本质量:困难负样本的质量直接影响模型性能,应选择那些与正样本语义相近但实际上不相关的文档作为负样本。
-
评估策略:在微调过程中,建议保留部分数据作为验证集,定期评估模型性能,防止过拟合。
-
迭代优化:可以采取多轮微调策略,根据模型表现不断优化负样本的选择。
通过合理利用RAGatouille项目的这些功能,开发者可以构建出更加强大和精准的检索系统,显著提升问答系统的整体性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00