RAGatouille项目中的自定义负样本微调实践指南
在信息检索和问答系统领域,RAGatouille作为一个基于RAG(Retrieval-Augmented Generation)架构的开源项目,为开发者提供了强大的检索增强生成能力。本文将重点探讨如何在RAGatouille项目中有效地使用自定义的困难负样本(hard negatives)进行模型微调。
自定义负样本的重要性
在检索任务中,困难负样本是指那些与查询语句语义相近但实际上不相关的文档片段。这些样本对于训练检索模型至关重要,因为它们能够帮助模型更好地区分真正相关的文档和那些看似相关但实际上不匹配的文档。通过精心设计的困难负样本,可以显著提升模型的检索精度。
数据准备策略
RAGatouille项目支持两种主要的数据格式来输入自定义的困难负样本:
-
带标签的数据对格式: 这种格式要求将数据组织为
[query, passage, label]的三元组列表。其中:label为1表示该passage是查询的正样本label为0表示该passage是查询的困难负样本
这种格式特别适合那些已经明确标注了正负样本的数据集,开发者可以直接利用现有的标注信息。
-
三元组格式: 这种格式将数据组织为
[query, positive_passage, hard_negative_passage]的三元组列表。每个查询对应一个正样本和一个困难负样本,这种结构更直观地反映了检索任务中样本之间的关系。
微调配置要点
在使用自定义困难负样本进行微调时,需要特别注意以下配置参数:
pairs_with_labels:当设置为True时,表示输入数据采用带标签的数据对格式num_new_negatives:应设置为0,表示不使用自动挖掘的新负样本mine_hard_negatives:应设置为False,避免与自定义负样本产生冲突
实践建议
-
样本平衡:确保正样本和负样本的数量保持合理比例,通常1:1到1:10都是常见的选择。
-
样本质量:困难负样本的质量直接影响模型性能,应选择那些与正样本语义相近但实际上不相关的文档作为负样本。
-
评估策略:在微调过程中,建议保留部分数据作为验证集,定期评估模型性能,防止过拟合。
-
迭代优化:可以采取多轮微调策略,根据模型表现不断优化负样本的选择。
通过合理利用RAGatouille项目的这些功能,开发者可以构建出更加强大和精准的检索系统,显著提升问答系统的整体性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00