ENSG00000187634 chr1 [ 4807614, 4807614] + | ENSG00000187634
ENSG00000187634 chr1 [ 4807614, 4807614] + | ENSG00000187634
ENSG00000187961 chr1 [ 4855568, 4855568] + | ENSG00000187961
ENSG00000188290 chr1 [ 4899965, 4899965] + | ENSG00000188290
ENSG00000187608 chr1 [ 4955148, 4955148] + | ENSG00000187608
ENSG00000188157 chr1 [ 5016563, 5016563] + | ENSG00000188157
... ... ... ... . ...
ENSG00000131591 chr1 [24894508, 24894508] - | ENSG00000131591
ENSG00000177700 chr1 [24924056, 24924056] - | ENSG00000177700
ENSG00000131584 chr1 [24925042, 24925042] - | ENSG00000131584
ENSG00000177757 chr1 [24925345, 24925345] - | ENSG00000177757
ENSG00000131586 chr1 [24925405, 24925405] - | ENSG00000131586
-------
seqinfo: 1 sequence from an unspecified genome; no seqlengths
We normalize chromatin states in ESC and lung to the TSS of genes with
bivalent states in ESC.
```r
mat_states_esc = normalizeToMatrix(states, tss_biv, value_column = "states_simplified")
mat_states_lung = normalizeToMatrix(states_lung, tss_biv, value_column = "states_simplified")
We also normalize methylation in ESC and lung to the same TSS.
mat_meth_esc = normalizeToMatrix(meth, tss_biv, value_column = "E003", mean_mode = "absolute",
smooth = TRUE)
mat_meth_lung = normalizeToMatrix(meth, tss_biv, value_column = "E096", mean_mode = "absolute",
smooth = TRUE)
We apply k-means clustering on the chromatin states in ESC (1kb upstream and downstream of TSS) to separate genes with bivalent TSS into two groups.
split = kmeans(mat_states_esc[, 40:60], centers = 2)$cluster
Now we make the heatmap list. The order of heatmaps are: chromatin states in ESC, chromatin states in lung, methylation in ESC and methylation in lung. Expression in ESC and lung are also added to the right side of the heatmap list.
expr_esc = expr[names(tss_biv), "E003"]
expr_lung = expr[names(tss_biv), "E096"]
ht_list = EnrichedHeatmap(mat_states_esc, name = "states_esc", col = states_col,
row_split = split, cluster_rows = TRUE,
top_annotation = HeatmapAnnotation(enrich = anno_enriched(gp = gpar(lty = 1:2)))) +
EnrichedHeatmap(mat_states_lung, name = "states_lung", col = states_col,
top_annotation = HeatmapAnnotation(enrich = anno_enriched(gp = gpar(lty = 1:2)))) +
EnrichedHeatmap(mat_meth_esc, name = "meth_esc", col = meth_col_fun,
top_annotation = HeatmapAnnotation(enrich = anno_enriched(gp = gpar(lty = 1:2)))) +
EnrichedHeatmap(mat_meth_lung, name = "meth_lung", col = meth_col_fun,
top_annotation = HeatmapAnnotation(enrich = anno_enriched(gp = gpar(lty = 1:2)))) +
Heatmap(log2(expr_esc + 1), name = "expr_esc", show_row_names = FALSE, width = unit(5, "mm"),
col = colorRamp2(c(0, 5), c("white", "red"))) +
Heatmap(log2(expr_lung + 1), name = "expr_lung", show_row_names = FALSE, width = unit(5, "mm"),
col = colorRamp2(c(0, 5), c("white", "red")))
draw(ht_list, ht_gap = unit(8, "mm"))

From the heatmap, we can see in cluster 1, the bivalent TSS in ESC are transited to active states in lung while in cluster 2, the bivalent TSS in ESC are transited to repressive states in lung. Also in cluster 1, the methylation is low in both ESC and lung while in cluster 2, the methylation is high in lung. The expression in cluster 1 is higher than in cluster 2 in lung.
Session info
sessionInfo()
## R version 3.4.0 (2017-04-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/openblas-base/libblas.so.3
## LAPACK: /usr/lib/libopenblasp-r0.2.18.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
## [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid stats4 parallel stats graphics grDevices utils datasets methods
## [10] base
##
## other attached packages:
## [1] circlize_0.4.1 EnrichedHeatmap_1.7.3 data.table_1.10.4
## [4] GenomicFeatures_1.28.3 AnnotationDbi_1.38.1 Biobase_2.36.2
## [7] GenomicRanges_1.28.3 GenomeInfoDb_1.12.2 IRanges_2.10.2
## [10] S4Vectors_0.14.3 BiocGenerics_0.22.0 knitr_1.16
## [13] markdown_0.8 evaluate_0.10 stringr_1.2.0
## [16] rtracklayer_1.36.4 GenomicAlignments_1.12.1 Rsamtools_1.28.0
## [19] Biostrings_2.44.1 XVector_0.16.0 SummarizedExperiment_1.6.3
## [22] DelayedArray_0.2.7 matrixStats_0.52.2 BiocParallel_1.10.1
## [25] BSgenome_1.44.0 rmarkdown_1.6 TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [28] GenomicInfoDb_1.12.1
##
## loaded via a namespace (and not attached):
## [1] colorspace_1.3-2 rprojroot_1.2 htmlTable_1.9
## [4] base64enc_0.1-3 dichromat_2.0-0 rstudioapi_0.6
## [7] bit64_0.9-7 splines_3.4.0 R.methodsS3_1.7.1
## [10] doParallel_1.0.10 geneplotter_1.54.0 annotate_1.54.0
## [13] cluster_2.0.6 R.oo_1.21.0 shiny_1.0.3
## [16] compiler_3.4.0 httr_1.2.1 backports_1.1.0
## [19] assertthat_0.2.0 Matrix_1.2-10 lazyeval_0.2.0
## [22] htmltools_0.3.6 tools_3.4.0 gtable_0.2.0
## [25] glue_1.1.1 GenomeInfoDbData_0.99.0 reshape2_1.4.2
## [28] dplyr_0.5.0 Rcpp_0.12.11 BiocInstaller_1.26.0
## [31] iterators_1.0.8 xfun_0.1 XML_3.98-1.7
## [34] zlibbioc_1.22.0 scales_0.4.1 VariantAnnotation_1.22.1
## [37] hms_0.3 yaml_2.1.14 memoise_1.1.0
## [40] gridExtra_2.2.1 ggplot2_2.2.1 rpart_4.1-11
## [43] latticeExtra_0.6-28 stringi_1.1.5 RSQLite_1.1-2
## [46] highr_0.6 foreach_1.4.3 checkmate_1.8.2
## [49] caTools_1.17.1 BiocStyle_2.4.0 rlang_0.1.1
## [52] pkgconfig_2.0.1 bitops_1.0-6 matrixcalc_1.0-3
## [55] lattice_0.20-35 purrr_0.2.2.2 htmlwidgets_0.8
## [58] bit_1.1-12 tidyselect_0.2.0 plyr_1.8.4
## [61] magrittr_1.5 R6_2.2.1 DBI_0.6-1
## [64] pillar_1.0.1 foreign_0.8-68 survival_2.41-3
## [67] RCurl_1.95-4.8 tibble_1.3.3 rjson_0.2.15
## [70] GetoptLong_0.1.6 digest_0.6.12 xtable_1.8-2
## [73] tidyr_0.6.3 R.utils_2.5.0 munsell_0.4.3
## [76] viridisLite_0.2.0
引言
在基因组学研究中,我们经常需要分析不同类型的基因组信号在特定基因组特征(如转录起始位点TSS、基因体等)周围的富集模式。EnrichedHeatmap包提供了一种强大的方法来可视化这些富集模式。本文将重点介绍如何使用EnrichedHeatmap处理和分析分类(categorical)基因组信号,特别是染色质状态数据。
染色质状态简介
染色质状态是通过整合多种表观遗传标记(如组蛋白修饰)来定义的基因组区域分类。ChromHMM等工具可以将基因组划分为不同的功能状态,如:
- 活跃转录起始位点(TssActive)
- 转录区域(Transcript)
- 增强子区域(Enhancer)
- 异染色质(Heterochromatin)
- 双价状态(TssBivalent)
- 抑制状态(Repressive)
- 静息状态(Quiescent)
这些分类数据为我们理解基因组功能提供了重要线索。
数据准备
首先我们需要加载必要的R包并准备数据:
library(GenomicRanges)
library(data.table)
library(EnrichedHeatmap)
library(circlize)
从Roadmap项目中获取染色质状态数据后,我们可以将其转换为GRanges对象:
states_bed = fread("染色质状态数据文件路径")
states = GRanges(seqnames = states_bed[[1]],
ranges = IRanges(states_bed[[2]] + 1, states_bed[[3]]),
states = states_bed[[4]])
为了简化分析,我们可以将相似的染色质状态进行合并:
state_mapping = c(
"1_TssA" = "TssActive",
"2_TssAFlnk" = "TssActive",
# 其他状态映射...
)
states$simplified_states = state_mapping[states$states]
基本可视化
转录起始位点分析
首先我们提取基因的TSS区域:
library(GenomicFeatures)
txdb = loadDb("转录组数据库路径")
genes = genes(txdb)
tss = promoters(genes, upstream = 0, downstream = 1)
然后我们将染色质状态信号标准化到TSS周围:
mat_states = normalizeToMatrix(states, tss, value_column = "simplified_states")
使用EnrichedHeatmap进行可视化:
state_colors = c(
TssActive = "red",
Transcript = "green",
# 其他状态颜色...
)
EnrichedHeatmap(mat_states, name = "states", col = state_colors, cluster_rows = TRUE)
基因体分析
我们也可以分析染色质状态在基因体上的分布:
mat_gene_body = normalizeToMatrix(states, genes, value_column = "simplified_states")
EnrichedHeatmap(mat_gene_body, name = "states", col = state_colors) +
rowAnnotation(gene_len = anno_points(log10(width(genes) + 1))
高级分析:整合多组学数据
结合DNA甲基化和基因表达
为了更全面地理解染色质状态的功能意义,我们可以整合DNA甲基化和基因表达数据:
# 标准化甲基化数据
mat_meth = normalizeToMatrix(meth_data, tss, value_column = "sample1")
# 创建热图列表
ht_list = EnrichedHeatmap(mat_states, name = "states") +
EnrichedHeatmap(mat_meth, name = "methylation") +
Heatmap(log2(expr_data + 1), name = "expression")
draw(ht_list)
双价TSS状态分析
在胚胎干细胞中,双价TSS状态(同时具有活跃和抑制标记)是一个重要特征。我们可以分析这些状态在分化过程中的变化:
# 识别具有双价状态的TSS
mat_bivalent = normalizeToMatrix(states[states$simplified_states == "TssBivalent"], tss)
bivalent_tss = tss[rowSums(mat_bivalent[, 40:60]) > 0] # 1kb窗口内的双价状态
# 比较不同细胞类型
mat_states_esc = normalizeToMatrix(esc_states, bivalent_tss)
mat_states_diff = normalizeToMatrix(diff_states, bivalent_tss)
# 可视化比较
ht_list = EnrichedHeatmap(mat_states_esc, name = "ESC states") +
EnrichedHeatmap(mat_states_diff, name = "Differentiated states")
draw(ht_list)
实用技巧
-
行排序优化:通过将分类变量转换为因子并指定水平顺序,可以控制热图中行的排序方式。
-
部分聚类:可以只对特定区域(如TSS附近1kb)进行聚类,增强关键模式的识别。
-
状态转换分析:使用弦图可视化染色质状态在不同条件下的转换情况。
-
多组学整合:结合染色质状态、DNA甲基化、基因表达等多组学数据,获得更全面的生物学见解。
结论
EnrichedHeatmap为分析分类基因组信号提供了强大而灵活的工具。通过本文介绍的方法,研究人员可以:
- 直观地可视化染色质状态在基因组特征周围的分布模式
- 识别不同功能状态的基因群体
- 分析发育或疾病过程中染色质状态的动态变化
- 整合多组学数据揭示更复杂的基因调控机制
这些分析对于理解基因组功能调控和表观遗传机制具有重要意义。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00