ENSG00000187634 chr1 [ 4807614, 4807614] + | ENSG00000187634
ENSG00000187634 chr1 [ 4807614, 4807614] + | ENSG00000187634
ENSG00000187961 chr1 [ 4855568, 4855568] + | ENSG00000187961
ENSG00000188290 chr1 [ 4899965, 4899965] + | ENSG00000188290
ENSG00000187608 chr1 [ 4955148, 4955148] + | ENSG00000187608
ENSG00000188157 chr1 [ 5016563, 5016563] + | ENSG00000188157
... ... ... ... . ...
ENSG00000131591 chr1 [24894508, 24894508] - | ENSG00000131591
ENSG00000177700 chr1 [24924056, 24924056] - | ENSG00000177700
ENSG00000131584 chr1 [24925042, 24925042] - | ENSG00000131584
ENSG00000177757 chr1 [24925345, 24925345] - | ENSG00000177757
ENSG00000131586 chr1 [24925405, 24925405] - | ENSG00000131586
-------
seqinfo: 1 sequence from an unspecified genome; no seqlengths
We normalize chromatin states in ESC and lung to the TSS of genes with
bivalent states in ESC.
```r
mat_states_esc = normalizeToMatrix(states, tss_biv, value_column = "states_simplified")
mat_states_lung = normalizeToMatrix(states_lung, tss_biv, value_column = "states_simplified")
We also normalize methylation in ESC and lung to the same TSS.
mat_meth_esc = normalizeToMatrix(meth, tss_biv, value_column = "E003", mean_mode = "absolute",
smooth = TRUE)
mat_meth_lung = normalizeToMatrix(meth, tss_biv, value_column = "E096", mean_mode = "absolute",
smooth = TRUE)
We apply k-means clustering on the chromatin states in ESC (1kb upstream and downstream of TSS) to separate genes with bivalent TSS into two groups.
split = kmeans(mat_states_esc[, 40:60], centers = 2)$cluster
Now we make the heatmap list. The order of heatmaps are: chromatin states in ESC, chromatin states in lung, methylation in ESC and methylation in lung. Expression in ESC and lung are also added to the right side of the heatmap list.
expr_esc = expr[names(tss_biv), "E003"]
expr_lung = expr[names(tss_biv), "E096"]
ht_list = EnrichedHeatmap(mat_states_esc, name = "states_esc", col = states_col,
row_split = split, cluster_rows = TRUE,
top_annotation = HeatmapAnnotation(enrich = anno_enriched(gp = gpar(lty = 1:2)))) +
EnrichedHeatmap(mat_states_lung, name = "states_lung", col = states_col,
top_annotation = HeatmapAnnotation(enrich = anno_enriched(gp = gpar(lty = 1:2)))) +
EnrichedHeatmap(mat_meth_esc, name = "meth_esc", col = meth_col_fun,
top_annotation = HeatmapAnnotation(enrich = anno_enriched(gp = gpar(lty = 1:2)))) +
EnrichedHeatmap(mat_meth_lung, name = "meth_lung", col = meth_col_fun,
top_annotation = HeatmapAnnotation(enrich = anno_enriched(gp = gpar(lty = 1:2)))) +
Heatmap(log2(expr_esc + 1), name = "expr_esc", show_row_names = FALSE, width = unit(5, "mm"),
col = colorRamp2(c(0, 5), c("white", "red"))) +
Heatmap(log2(expr_lung + 1), name = "expr_lung", show_row_names = FALSE, width = unit(5, "mm"),
col = colorRamp2(c(0, 5), c("white", "red")))
draw(ht_list, ht_gap = unit(8, "mm"))

From the heatmap, we can see in cluster 1, the bivalent TSS in ESC are transited to active states in lung while in cluster 2, the bivalent TSS in ESC are transited to repressive states in lung. Also in cluster 1, the methylation is low in both ESC and lung while in cluster 2, the methylation is high in lung. The expression in cluster 1 is higher than in cluster 2 in lung.
Session info
sessionInfo()
## R version 3.4.0 (2017-04-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/openblas-base/libblas.so.3
## LAPACK: /usr/lib/libopenblasp-r0.2.18.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
## [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid stats4 parallel stats graphics grDevices utils datasets methods
## [10] base
##
## other attached packages:
## [1] circlize_0.4.1 EnrichedHeatmap_1.7.3 data.table_1.10.4
## [4] GenomicFeatures_1.28.3 AnnotationDbi_1.38.1 Biobase_2.36.2
## [7] GenomicRanges_1.28.3 GenomeInfoDb_1.12.2 IRanges_2.10.2
## [10] S4Vectors_0.14.3 BiocGenerics_0.22.0 knitr_1.16
## [13] markdown_0.8 evaluate_0.10 stringr_1.2.0
## [16] rtracklayer_1.36.4 GenomicAlignments_1.12.1 Rsamtools_1.28.0
## [19] Biostrings_2.44.1 XVector_0.16.0 SummarizedExperiment_1.6.3
## [22] DelayedArray_0.2.7 matrixStats_0.52.2 BiocParallel_1.10.1
## [25] BSgenome_1.44.0 rmarkdown_1.6 TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [28] GenomicInfoDb_1.12.1
##
## loaded via a namespace (and not attached):
## [1] colorspace_1.3-2 rprojroot_1.2 htmlTable_1.9
## [4] base64enc_0.1-3 dichromat_2.0-0 rstudioapi_0.6
## [7] bit64_0.9-7 splines_3.4.0 R.methodsS3_1.7.1
## [10] doParallel_1.0.10 geneplotter_1.54.0 annotate_1.54.0
## [13] cluster_2.0.6 R.oo_1.21.0 shiny_1.0.3
## [16] compiler_3.4.0 httr_1.2.1 backports_1.1.0
## [19] assertthat_0.2.0 Matrix_1.2-10 lazyeval_0.2.0
## [22] htmltools_0.3.6 tools_3.4.0 gtable_0.2.0
## [25] glue_1.1.1 GenomeInfoDbData_0.99.0 reshape2_1.4.2
## [28] dplyr_0.5.0 Rcpp_0.12.11 BiocInstaller_1.26.0
## [31] iterators_1.0.8 xfun_0.1 XML_3.98-1.7
## [34] zlibbioc_1.22.0 scales_0.4.1 VariantAnnotation_1.22.1
## [37] hms_0.3 yaml_2.1.14 memoise_1.1.0
## [40] gridExtra_2.2.1 ggplot2_2.2.1 rpart_4.1-11
## [43] latticeExtra_0.6-28 stringi_1.1.5 RSQLite_1.1-2
## [46] highr_0.6 foreach_1.4.3 checkmate_1.8.2
## [49] caTools_1.17.1 BiocStyle_2.4.0 rlang_0.1.1
## [52] pkgconfig_2.0.1 bitops_1.0-6 matrixcalc_1.0-3
## [55] lattice_0.20-35 purrr_0.2.2.2 htmlwidgets_0.8
## [58] bit_1.1-12 tidyselect_0.2.0 plyr_1.8.4
## [61] magrittr_1.5 R6_2.2.1 DBI_0.6-1
## [64] pillar_1.0.1 foreign_0.8-68 survival_2.41-3
## [67] RCurl_1.95-4.8 tibble_1.3.3 rjson_0.2.15
## [70] GetoptLong_0.1.6 digest_0.6.12 xtable_1.8-2
## [73] tidyr_0.6.3 R.utils_2.5.0 munsell_0.4.3
## [76] viridisLite_0.2.0
引言
在基因组学研究中,我们经常需要分析不同类型的基因组信号在特定基因组特征(如转录起始位点TSS、基因体等)周围的富集模式。EnrichedHeatmap包提供了一种强大的方法来可视化这些富集模式。本文将重点介绍如何使用EnrichedHeatmap处理和分析分类(categorical)基因组信号,特别是染色质状态数据。
染色质状态简介
染色质状态是通过整合多种表观遗传标记(如组蛋白修饰)来定义的基因组区域分类。ChromHMM等工具可以将基因组划分为不同的功能状态,如:
- 活跃转录起始位点(TssActive)
- 转录区域(Transcript)
- 增强子区域(Enhancer)
- 异染色质(Heterochromatin)
- 双价状态(TssBivalent)
- 抑制状态(Repressive)
- 静息状态(Quiescent)
这些分类数据为我们理解基因组功能提供了重要线索。
数据准备
首先我们需要加载必要的R包并准备数据:
library(GenomicRanges)
library(data.table)
library(EnrichedHeatmap)
library(circlize)
从Roadmap项目中获取染色质状态数据后,我们可以将其转换为GRanges对象:
states_bed = fread("染色质状态数据文件路径")
states = GRanges(seqnames = states_bed[[1]],
ranges = IRanges(states_bed[[2]] + 1, states_bed[[3]]),
states = states_bed[[4]])
为了简化分析,我们可以将相似的染色质状态进行合并:
state_mapping = c(
"1_TssA" = "TssActive",
"2_TssAFlnk" = "TssActive",
# 其他状态映射...
)
states$simplified_states = state_mapping[states$states]
基本可视化
转录起始位点分析
首先我们提取基因的TSS区域:
library(GenomicFeatures)
txdb = loadDb("转录组数据库路径")
genes = genes(txdb)
tss = promoters(genes, upstream = 0, downstream = 1)
然后我们将染色质状态信号标准化到TSS周围:
mat_states = normalizeToMatrix(states, tss, value_column = "simplified_states")
使用EnrichedHeatmap进行可视化:
state_colors = c(
TssActive = "red",
Transcript = "green",
# 其他状态颜色...
)
EnrichedHeatmap(mat_states, name = "states", col = state_colors, cluster_rows = TRUE)
基因体分析
我们也可以分析染色质状态在基因体上的分布:
mat_gene_body = normalizeToMatrix(states, genes, value_column = "simplified_states")
EnrichedHeatmap(mat_gene_body, name = "states", col = state_colors) +
rowAnnotation(gene_len = anno_points(log10(width(genes) + 1))
高级分析:整合多组学数据
结合DNA甲基化和基因表达
为了更全面地理解染色质状态的功能意义,我们可以整合DNA甲基化和基因表达数据:
# 标准化甲基化数据
mat_meth = normalizeToMatrix(meth_data, tss, value_column = "sample1")
# 创建热图列表
ht_list = EnrichedHeatmap(mat_states, name = "states") +
EnrichedHeatmap(mat_meth, name = "methylation") +
Heatmap(log2(expr_data + 1), name = "expression")
draw(ht_list)
双价TSS状态分析
在胚胎干细胞中,双价TSS状态(同时具有活跃和抑制标记)是一个重要特征。我们可以分析这些状态在分化过程中的变化:
# 识别具有双价状态的TSS
mat_bivalent = normalizeToMatrix(states[states$simplified_states == "TssBivalent"], tss)
bivalent_tss = tss[rowSums(mat_bivalent[, 40:60]) > 0] # 1kb窗口内的双价状态
# 比较不同细胞类型
mat_states_esc = normalizeToMatrix(esc_states, bivalent_tss)
mat_states_diff = normalizeToMatrix(diff_states, bivalent_tss)
# 可视化比较
ht_list = EnrichedHeatmap(mat_states_esc, name = "ESC states") +
EnrichedHeatmap(mat_states_diff, name = "Differentiated states")
draw(ht_list)
实用技巧
-
行排序优化:通过将分类变量转换为因子并指定水平顺序,可以控制热图中行的排序方式。
-
部分聚类:可以只对特定区域(如TSS附近1kb)进行聚类,增强关键模式的识别。
-
状态转换分析:使用弦图可视化染色质状态在不同条件下的转换情况。
-
多组学整合:结合染色质状态、DNA甲基化、基因表达等多组学数据,获得更全面的生物学见解。
结论
EnrichedHeatmap为分析分类基因组信号提供了强大而灵活的工具。通过本文介绍的方法,研究人员可以:
- 直观地可视化染色质状态在基因组特征周围的分布模式
- 识别不同功能状态的基因群体
- 分析发育或疾病过程中染色质状态的动态变化
- 整合多组学数据揭示更复杂的基因调控机制
这些分析对于理解基因组功能调控和表观遗传机制具有重要意义。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00