BOINC项目中设备选择与GPU排除配置指南
2025-07-04 10:06:08作者:尤辰城Agatha
背景介绍
在分布式计算平台BOINC中,用户有时需要针对特定硬件设备进行任务分配控制。当计算机配备多个GPU时,某些GPU可能被保留用于其他专业用途(如深度学习训练、图形渲染等),不适合运行BOINC的工作单元。本文将详细介绍如何在BOINC客户端中实现设备选择性配置。
设备识别机制
BOINC客户端通过coproc_info.xml文件自动检测系统中的计算设备。该文件记录了每个GPU的详细信息,包括:
- 设备名称和厂商信息
- 计算能力参数
- 内存配置
- OpenCL/CUDA支持情况
- 设备编号(device_num)
值得注意的是,设备编号的分配遵循按厂商分类原则:不同厂商的GPU可能拥有相同的设备编号(如AMD和Intel GPU可能都显示为device_num=0),而同一厂商的多个GPU则会获得不同的编号。
配置方法
全局GPU排除配置
通过修改cc_config.xml文件,可以实现对特定GPU的全局排除:
<exclude_gpu>
<url>项目URL</url>
<device_num>设备编号</device_num>
<type>GPU类型(NVIDIA|ATI|intel_gpu)</type>
<app>应用程序名称</app>
</exclude_gpu>
配置参数说明:
- url:可选,指定适用项目
- device_num:可选,指定要排除的设备编号
- type:可选,指定GPU厂商类型
- app:可选,指定适用应用程序
多GPU环境处理建议
对于多GPU系统,建议采取以下步骤:
- 首先检查coproc_info.xml确认各GPU的设备信息
- 根据厂商类型区分需要排除的设备
- 对于同厂商多GPU,使用device_num进行精确控制
- 配置完成后重启BOINC客户端使设置生效
高级配置方案
除了基本的排除配置,BOINC还支持更精细化的控制:
- 按项目配置:可以为不同科学计算项目设置不同的GPU使用策略
- 性能调优:通过限制特定GPU的使用,可以确保关键应用获得稳定的计算资源
- 能耗管理:选择性启用能效比更高的GPU设备
注意事项
- 配置变更后建议检查客户端日志确认设置已生效
- 多GPU系统中OpenCL/CUDA索引可能与设备编号不一致
- 某些特殊项目可能有额外的设备要求,需参考具体项目文档
- 定期检查配置,特别是在硬件升级或驱动程序更新后
通过合理配置GPU排除设置,用户可以更灵活地管理计算资源,在参与分布式计算的同时不影响其他专业应用的工作负载。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218