Apache Sedona项目中使用GeoParquet格式的注意事项
Apache Sedona作为地理空间大数据处理框架,在1.7.1版本中提供了对GeoParquet格式的支持。但在实际使用过程中,开发者可能会遇到一些兼容性问题,特别是在不同Spark版本环境下运行时。
典型错误现象
当在Databricks Runtime 15.4(基于Spark 3.5)环境中使用Sedona 1.7.1版本时,尝试以GeoParquet格式保存数据可能会遇到以下错误:
java.lang.NoClassDefFoundError: org/apache/spark/sql/internal/SQLConf$LegacyBehaviorPolicy$
该错误会导致作业失败,仅生成_started文件而无法完成数据写入。值得注意的是,当使用普通Parquet格式时则不会出现此问题。
问题根源分析
这个问题的根本原因是版本不匹配。具体表现为:
- Databricks Runtime 15.4基于Spark 3.5构建
- 用户可能错误地使用了针对Spark 3.4编译的Sedona JAR包
- Spark内部API在不同版本间存在差异,导致类加载失败
解决方案
要解决这个问题,必须确保使用与Spark运行时版本完全匹配的Sedona JAR包:
-
对于Spark 3.5环境(如DBR 15.4),应使用专门为Spark 3.5编译的版本:
sedona-spark-shaded-3.5_2.12-1.7.1.jar -
验证JAR包版本是否正确,可以通过检查文件名中的"3.5"标识确认
最佳实践建议
-
版本一致性原则:始终确保Sedona的版本与Spark运行时版本严格匹配
-
环境验证:在部署前,先确认运行环境的Spark版本号
-
依赖管理:在项目构建文件中明确指定兼容的Sedona版本,避免依赖冲突
-
错误排查:遇到类似类加载错误时,首先考虑版本兼容性问题
总结
Apache Sedona作为强大的地理空间处理工具,在使用时需要特别注意版本兼容性。特别是在处理GeoParquet等特定格式时,版本不匹配可能导致隐蔽的错误。通过遵循版本匹配原则和采用系统化的依赖管理方法,可以避免此类问题的发生,确保地理空间数据处理流程的稳定性。
对于使用Databricks环境的开发者,建议在升级运行时版本时,同步检查并更新所有相关依赖库的版本,以保持整个技术栈的一致性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00