MedSAM2项目中的3D分割推理技术解析
2025-06-24 09:07:08作者:沈韬淼Beryl
概述
在医学影像分析领域,3D图像分割是一个重要且具有挑战性的任务。MedSAM2作为医学图像分割领域的先进模型,提供了多种推理方式,其中关于3D分割的实现方式值得深入探讨。
MedSAM2的两种3D推理方式
MedSAM2项目实际上提供了两种不同的3D分割推理方法:
-
基于2D切片独立推理的方法:
- 该方法将3D体积视为一系列独立的2D切片
- 对每个切片单独进行分割预测
- 适用于图像级微调的模型
- 实现简单直接,但可能缺乏切片间的一致性
-
基于视频传播的3D推理方法:
- 选择3D体积中的中间切片作为起始点
- 使用真实标注或预测结果生成边界框提示
- 通过时序传播机制向前后方向传播分割结果
- 每个切片的预测结果作为下一个切片的提示
- 只需单个2D提示即可获得完整3D分割
技术实现差异
两种方法在实现上有明显区别:
-
切片独立推理:
- 直接调用medsam_inference进行逐片预测
- 不利用相邻切片间的空间连续性
- 计算效率高但可能产生不一致结果
-
视频传播推理:
- 使用predictor.propagate_in_video方法
- 通过传播机制保持分割结果的空间一致性
- 计算量略大但结果更加平滑连续
- 更符合医学影像的3D特性
应用场景选择
根据不同的应用需求,可以选择合适的推理方式:
- 研究验证:当需要与原始论文方法保持一致时,应使用视频传播方法
- 快速推理:对速度要求高且可以接受少量不一致时,可使用切片独立方法
- 临床部署:建议使用视频传播方法以获得更稳定的3D分割结果
未来发展方向
项目团队表示将很快发布3D图像和视频微调代码,这将进一步提升模型在3D分割任务上的表现。这种端到端的3D训练方法有望:
- 更好地捕捉体积数据中的空间关系
- 提高分割边界的连续性
- 减少人工提示的需求
- 提升在复杂解剖结构上的分割精度
总结
MedSAM2提供了灵活的3D分割解决方案,理解这两种方法的区别对于正确使用该项目至关重要。研究人员应根据具体需求选择合适的推理方式,并关注即将发布的3D训练代码,这将为医学图像分析带来更多可能性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217