oneDNN在AArch64平台上matmul内核断言失败问题分析与解决
2025-06-18 11:03:55作者:田桥桑Industrious
问题背景
在AArch64架构的CPU平台上,使用oneDNN进行矩阵乘法(matmul)运算时,当调用acl_matmul内核时会出现断言失败的问题。该问题主要影响与自注意力机制(SDPA/MHA/MQA)相关的图计算测试用例,导致多个测试用例被跳过或失败。
问题现象
当运行特定形状的矩阵乘法运算时,程序会在acl_matmul内核中触发断言失败,错误信息如下:
Assertion `FixedFormat || _B_transposed' failed.
Aborted (core dumped)
环境信息
- 硬件平台:AArch64架构CPU
- 操作系统:Ubuntu 22.04.1
- 编译器:GCC 11.4.0
- oneDNN版本:主分支最新提交(af1410c2)
- Compute Library版本:v24.11.1
问题复现
通过一个特定的矩阵乘法示例可以稳定复现该问题:
-
矩阵维度:
- 输入矩阵A:形状为[4,16,384,384]
- 输入矩阵B:形状为[4,16,384,64]
- 输出矩阵C:形状为[4,16,384,64]
-
关键特征:
- 使用OpenMP多线程并行(4线程)
- 矩阵B使用了abdc格式(即对最后两个维度进行了转置)
问题分析
经过深入分析,发现问题根源在于Compute Library(ACL)的矩阵乘法内核实现。具体来说:
- 当使用多线程并行执行时,某些线程配置会触发断言失败
- 问题与矩阵B的转置状态有关
- 某些特定形状(如384x64和64x384)可以正常工作
- 减少线程数量可以暂时规避该问题
解决方案
ARM团队已经在Compute Library v52.0.1版本中修复了这个问题。主要修复内容包括:
- 改进了矩阵转置处理逻辑
- 增强了多线程环境下的稳定性
- 修复了断言条件检查
验证结果
在升级到Compute Library v52.0.1后:
- 原始复现用例可以正常执行
- 相关断言不再触发
- 多线程环境下运行稳定
后续工作
虽然大部分问题已经解决,但仍有少量测试用例需要进一步处理:
- 完善剩余两个测试用例的支持
- 在oneDNN中升级默认的Compute Library版本
- 重新启用之前跳过的图计算测试用例
技术建议
对于使用oneDNN在AArch64平台上的开发者:
- 建议使用最新版本的Compute Library(v52.0.1或更高)
- 对于矩阵乘法运算,注意输入矩阵的布局格式
- 在多线程环境下进行充分测试
- 关注oneDNN的版本更新,及时获取稳定性改进
该问题的解决为AArch64平台上的深度学习计算提供了更好的稳定性和性能,特别是在处理自注意力机制等复杂模型时。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92