Prometheus Operator中如何限制Kubelet指标采集范围
在Kubernetes监控实践中,Prometheus Operator是一个广泛使用的工具,它简化了Prometheus及其相关组件的部署和管理。然而,在多租户或大型集群环境中,管理员经常需要限制监控范围,只关注特定的命名空间。
问题背景
当在共享Kubernetes集群中部署Prometheus Operator时,虽然可以通过配置prometheusOperator.namespaces参数来限制ServiceMonitor等资源的发现范围,但Kubelet采集的指标却不受此限制。这会导致Prometheus仍然接收并处理来自所有命名空间的Kubelet指标,进而触发不必要的告警。
技术原理分析
Kubelet作为Kubernetes节点代理,会暴露节点和容器级别的指标。Prometheus Operator默认会创建一个ServiceMonitor来采集这些指标。由于Kubelet指标是节点级别的资源,它们包含了集群中所有命名空间的信息,因此简单地配置Operator的命名空间过滤不会影响这些指标的采集。
解决方案
要解决这个问题,可以通过metricRelabelings配置来过滤Kubelet指标。具体方法是在Kubelet的ServiceMonitor中添加metricRelabelings规则,只保留指定命名空间的指标。
示例配置如下:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: kubelet
namespace: monitoring
spec:
endpoints:
- port: https-metrics
scheme: https
metricRelabelings:
- sourceLabels: [namespace]
action: keep
regex: namespace1|namespace2|argo|ingress-nginx
selector:
matchLabels:
k8s-app: kubelet
实现细节
-
metricRelabelings机制:这是Prometheus在采集指标后但在存储前的处理阶段,允许对指标进行过滤和重标记。
-
过滤逻辑:我们基于
namespace标签进行过滤,只保留与正则表达式匹配的命名空间指标。 -
性能考量:虽然这种方法仍然会采集所有指标,但会在Prometheus端进行过滤,减少了存储和处理压力。
最佳实践
-
对于大型集群,建议结合使用命名空间限制和指标过滤,以获得最佳性能。
-
定期审查和更新需要监控的命名空间列表,确保监控范围与业务需求保持一致。
-
考虑使用Prometheus的全局external_labels功能来标记不同环境的指标,便于集中管理。
通过这种配置方式,管理员可以精确控制Prometheus Operator采集的Kubelet指标范围,避免不必要的资源消耗和告警噪音,实现更高效的集群监控。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00