Simhash 近似重复检测技术文档
2024-12-28 23:43:09作者:平淮齐Percy
1. 安装指南
在开始使用Simhash之前,请确保您的开发环境满足以下要求:
- C++编译器支持C++11或更高版本
- 安装了cmake构建系统
以下是安装Simhash的步骤:
-
克隆Git仓库:
git clone https://github.com/seomoz/simhash-cpp.git -
进入项目目录:
cd simhash-cpp -
创建构建目录并编译:
mkdir build && cd build cmake .. make
编译完成后,库文件和可执行文件将位于build目录中。
2. 项目的使用说明
Simhash库提供了两种工具来查找simhashes:
Simhash::find_all:查找所有匹配的simhash对Simhash::find_clusters:查找匹配的simhash簇(请参阅#clustering)
此外,项目还提供了两个二进制文件,以便从其他语言中使用。这两个文件读取以换行符分隔的十进制字符串形式的hashes,并输出以换行符分隔的JSON数组。
simhash-find-all:将所有匹配对写入包含两个元素的数组simhash-find-clusters:将所有簇写入simhash数组
这两个二进制文件具有以下通用参数:
--input:指定要读取的文件名(默认为-,表示标准输入)--output:指定要写入的文件名(默认为-,表示标准输出)--blocks:设置用于simhash匹配的块数--distance:设置考虑匹配的最大比特距离
3. 项目API使用文档
以下是Simhash库中一些关键API的简要说明:
Simhash::find_all
此函数用于查找所有匹配的simhash对。其基本用法如下:
std::vector<std::pair<uint64_t, uint64_t>> find_all(const std::vector<uint64_t>& fingerprints, int blocks, int distance);
fingerprints:指纹数组blocks:块数distance:最大比特距离
Simhash::find_clusters
此函数用于查找匹配的simhash簇。其基本用法如下:
std::vector<std::vector<uint64_t>> find_clusters(const std::vector<uint64_t>& fingerprints, int blocks, int distance);
参数与find_all相同。
4. 项目安装方式
请参考上述“安装指南”一节中的步骤进行安装。安装完成后,您将可以在您的C++项目中包含Simhash库,并使用其功能。如果您需要使用二进制文件,也可以直接从构建目录中运行它们。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869