PyTorch-Image-Models 新增预激活 ResNet 模型支持的技术解析
在深度学习领域,ResNet(残差网络)及其变种一直是计算机视觉任务中的重要基础架构。近期,PyTorch-Image-Models(简称timm)项目新增了对预激活ResNet(Pre-activation ResNet,又称ResNetV2)18和34版本的支持,并提供了预训练权重,这一更新为模型压缩领域的研究者提供了重要的基准参考。
预激活ResNet的技术特点
预激活ResNet是传统ResNet架构的重要改进版本,其核心创新在于改变了残差块中批量归一化(BatchNorm)和激活函数(ReLU)的顺序。与传统ResNet相比,预激活版本将BN和ReLU置于卷积层之前,这种设计带来了几个显著优势:
- 梯度流动更加顺畅,缓解了深度网络中的梯度消失问题
- 训练过程更加稳定
- 通常能够获得更好的最终精度
在模型压缩研究(如量化、剪枝和蒸馏)中,预激活ResNet因其良好的训练特性和可解释性,经常被选作基准模型。特别是ResNet18这样的小型架构,因其适中的计算需求而成为验证新方法的理想选择。
新增模型变体详解
timm项目此次新增了多个预激活ResNet变体,主要包括两类:
- 标准预激活ResNet:严格遵循原始论文设计的架构
- D变种预激活ResNet:在标准架构基础上引入了多项改进
D变种的主要改进包括:
- 使用三个3×3卷积替换原始的单7×7卷积作为stem层
- 在下采样捷径连接中使用平均池化+1×1非步进卷积的组合,而非传统的步进1×1卷积
这些改进虽然略微增加了参数数量和计算量,但通常能带来更好的模型性能。值得注意的是,D变种与专门为小图像数据集(如CIFAR-10)设计的修改不同,后者通常会减少下采样次数以适应小尺寸输入。
训练细节与模型性能
新增的预训练模型采用了与MobileNetV4 Small相似的训练配方进行优化,包括:
- 使用RA数据增强策略
- 训练周期设置为3600个epoch
- 输入分辨率为224×224像素
- 在ImageNet-1k数据集上进行训练
这种训练配置充分利用了现代训练技术,能够使相对较小的ResNet架构发挥出最佳性能。对于模型压缩研究者而言,这些高质量预训练权重提供了可靠的基准,有助于在不同方法间进行公平比较。
实际应用建议
在选择具体模型变体时,研究者应考虑以下因素:
- 标准预激活ResNet:适合需要严格遵循原始架构的实验,或计算资源极其受限的场景
- D变种预激活ResNet:适合追求最高精度的应用,能够容忍轻微的计算开销增加
- T变种(未来可能添加):采用分层通道进展设计,在特定场景下可能表现更优
对于模型压缩研究,建议同时考虑标准版和D变种的压缩效果,因为不同的压缩方法可能对不同架构表现出不同的敏感性。此外,虽然这些模型主要在ImageNet上训练,但通过适当的微调,它们也能很好地适应其他计算机视觉任务。
这一更新显著丰富了timm项目的模型选择,为计算机视觉社区,特别是模型压缩领域的研究者提供了更多高质量的基础模型选项。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00