首页
/ PyTorch-Image-Models 新增预激活 ResNet 模型支持的技术解析

PyTorch-Image-Models 新增预激活 ResNet 模型支持的技术解析

2025-05-04 15:01:34作者:宣海椒Queenly

在深度学习领域,ResNet(残差网络)及其变种一直是计算机视觉任务中的重要基础架构。近期,PyTorch-Image-Models(简称timm)项目新增了对预激活ResNet(Pre-activation ResNet,又称ResNetV2)18和34版本的支持,并提供了预训练权重,这一更新为模型压缩领域的研究者提供了重要的基准参考。

预激活ResNet的技术特点

预激活ResNet是传统ResNet架构的重要改进版本,其核心创新在于改变了残差块中批量归一化(BatchNorm)和激活函数(ReLU)的顺序。与传统ResNet相比,预激活版本将BN和ReLU置于卷积层之前,这种设计带来了几个显著优势:

  1. 梯度流动更加顺畅,缓解了深度网络中的梯度消失问题
  2. 训练过程更加稳定
  3. 通常能够获得更好的最终精度

在模型压缩研究(如量化、剪枝和蒸馏)中,预激活ResNet因其良好的训练特性和可解释性,经常被选作基准模型。特别是ResNet18这样的小型架构,因其适中的计算需求而成为验证新方法的理想选择。

新增模型变体详解

timm项目此次新增了多个预激活ResNet变体,主要包括两类:

  1. 标准预激活ResNet:严格遵循原始论文设计的架构
  2. D变种预激活ResNet:在标准架构基础上引入了多项改进

D变种的主要改进包括:

  • 使用三个3×3卷积替换原始的单7×7卷积作为stem层
  • 在下采样捷径连接中使用平均池化+1×1非步进卷积的组合,而非传统的步进1×1卷积

这些改进虽然略微增加了参数数量和计算量,但通常能带来更好的模型性能。值得注意的是,D变种与专门为小图像数据集(如CIFAR-10)设计的修改不同,后者通常会减少下采样次数以适应小尺寸输入。

训练细节与模型性能

新增的预训练模型采用了与MobileNetV4 Small相似的训练配方进行优化,包括:

  • 使用RA数据增强策略
  • 训练周期设置为3600个epoch
  • 输入分辨率为224×224像素
  • 在ImageNet-1k数据集上进行训练

这种训练配置充分利用了现代训练技术,能够使相对较小的ResNet架构发挥出最佳性能。对于模型压缩研究者而言,这些高质量预训练权重提供了可靠的基准,有助于在不同方法间进行公平比较。

实际应用建议

在选择具体模型变体时,研究者应考虑以下因素:

  1. 标准预激活ResNet:适合需要严格遵循原始架构的实验,或计算资源极其受限的场景
  2. D变种预激活ResNet:适合追求最高精度的应用,能够容忍轻微的计算开销增加
  3. T变种(未来可能添加):采用分层通道进展设计,在特定场景下可能表现更优

对于模型压缩研究,建议同时考虑标准版和D变种的压缩效果,因为不同的压缩方法可能对不同架构表现出不同的敏感性。此外,虽然这些模型主要在ImageNet上训练,但通过适当的微调,它们也能很好地适应其他计算机视觉任务。

这一更新显著丰富了timm项目的模型选择,为计算机视觉社区,特别是模型压缩领域的研究者提供了更多高质量的基础模型选项。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
852
505
kernelkernel
deepin linux kernel
C
21
5
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
240
283
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
UAVSUAVS
智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
vue-devuivue-devui
基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
614
74
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
175
260
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.07 K