CGAL中多边形Minkowski求和的内部收缩实现方法
2025-06-08 19:48:09作者:昌雅子Ethen
概述
在计算几何领域,Minkowski求和是一个重要的操作,它广泛应用于机器人路径规划、碰撞检测等场景。本文探讨了使用CGAL库实现多边形内部收缩效果的技术方法,这是通过特殊的Minkowski求和操作实现的。
Minkowski求和基础
Minkowski求和的基本定义是两个几何形状所有点向量相加的结果。对于两个多边形A和B,它们的Minkowski和A⊕B定义为所有a+b的点的集合,其中a∈A,b∈B。在CGAL中,标准的Minkowski求和函数要求输入多边形必须是逆时针方向的简单多边形。
内部收缩的特殊需求
在某些应用场景中,我们需要实现多边形的"内部收缩"效果,即相当于在一个多边形内部进行Minkowski求和。这与标准的Minkowski求和不同,标准的求和操作会产生一个更大的多边形,而内部收缩则需要产生一个更小的多边形。
实现方法分析
方法一:补集转换法
- 首先计算原始多边形的补集
- 对补集进行标准的Minkowski求和
- 最后取结果的内环作为收缩后的多边形
这种方法利用了CGAL的complement()函数来获取多边形的补集,然后使用支持带孔多边形的Minkowski求和函数进行计算。
方法二:分解合并法
- 将原始多边形用更大的边界包围
- 对包围后的多边形进行凸分解
- 对每个凸分量与收缩多边形进行Minkowski求和
- 使用CGAL::Polygon_set类模板执行最终的并集操作
- 取结果的内环作为最终收缩多边形
这种方法虽然步骤较多,但稳定性较好,特别适合复杂多边形的情况。
实现注意事项
- 输入多边形必须保持逆时针方向,CGAL不接受顺时针方向的输入
- 使用带孔多边形支持的函数时,需要注意函数限制
- 对于复杂多边形,分解为尽可能少的简单多边形可以提高效率
- 精确计算需要选用适当的核类型,如Exact_predicates_exact_constructions_kernel
性能优化建议
- 对于需要频繁计算的应用,可以考虑预处理多边形的凸分解
- 使用适当的数据结构存储中间结果
- 根据实际精度需求选择合适的核类型,在精度和性能之间取得平衡
应用场景延伸
这种内部收缩技术在机器人学中有广泛应用,特别是在:
- 路径规划中的安全区域计算
- 碰撞检测中的缓冲区域生成
- 制造工艺中的刀具路径规划
通过合理运用CGAL提供的几何算法,开发者可以高效实现这些复杂几何操作,为上层应用提供强大的几何计算支持。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++026Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
943
556

React Native鸿蒙化仓库
C++
196
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
361
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71