CGAL中多边形Minkowski求和的内部收缩实现方法
2025-06-08 04:18:54作者:昌雅子Ethen
概述
在计算几何领域,Minkowski求和是一个重要的操作,它广泛应用于机器人路径规划、碰撞检测等场景。本文探讨了使用CGAL库实现多边形内部收缩效果的技术方法,这是通过特殊的Minkowski求和操作实现的。
Minkowski求和基础
Minkowski求和的基本定义是两个几何形状所有点向量相加的结果。对于两个多边形A和B,它们的Minkowski和A⊕B定义为所有a+b的点的集合,其中a∈A,b∈B。在CGAL中,标准的Minkowski求和函数要求输入多边形必须是逆时针方向的简单多边形。
内部收缩的特殊需求
在某些应用场景中,我们需要实现多边形的"内部收缩"效果,即相当于在一个多边形内部进行Minkowski求和。这与标准的Minkowski求和不同,标准的求和操作会产生一个更大的多边形,而内部收缩则需要产生一个更小的多边形。
实现方法分析
方法一:补集转换法
- 首先计算原始多边形的补集
- 对补集进行标准的Minkowski求和
- 最后取结果的内环作为收缩后的多边形
这种方法利用了CGAL的complement()函数来获取多边形的补集,然后使用支持带孔多边形的Minkowski求和函数进行计算。
方法二:分解合并法
- 将原始多边形用更大的边界包围
- 对包围后的多边形进行凸分解
- 对每个凸分量与收缩多边形进行Minkowski求和
- 使用CGAL::Polygon_set类模板执行最终的并集操作
- 取结果的内环作为最终收缩多边形
这种方法虽然步骤较多,但稳定性较好,特别适合复杂多边形的情况。
实现注意事项
- 输入多边形必须保持逆时针方向,CGAL不接受顺时针方向的输入
- 使用带孔多边形支持的函数时,需要注意函数限制
- 对于复杂多边形,分解为尽可能少的简单多边形可以提高效率
- 精确计算需要选用适当的核类型,如Exact_predicates_exact_constructions_kernel
性能优化建议
- 对于需要频繁计算的应用,可以考虑预处理多边形的凸分解
- 使用适当的数据结构存储中间结果
- 根据实际精度需求选择合适的核类型,在精度和性能之间取得平衡
应用场景延伸
这种内部收缩技术在机器人学中有广泛应用,特别是在:
- 路径规划中的安全区域计算
- 碰撞检测中的缓冲区域生成
- 制造工艺中的刀具路径规划
通过合理运用CGAL提供的几何算法,开发者可以高效实现这些复杂几何操作,为上层应用提供强大的几何计算支持。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328