Cheerio.js: 轻量级且强大的HTML/XML解析与操作库
项目介绍
Cheerio.js 是一个为Node.js设计的快速、灵活且优雅的HTML和XML处理库,它实现了类似jQuery的核心语法。该库剔除了jQuery中的DOM不一致性和浏览器相关杂项,突显了其精美的API结构。Cheerio通过使用parse5作为解析器(并可选地使用htmlparser2),能够处理几乎所有的HTML和XML数据。其轻量级的特性,加之高效的解析、操纵与渲染能力,使其成为服务器端处理HTML数据的理想选择。
项目快速启动
要迅速开始使用Cheerio,首先你需要安装它。在你的项目目录中运行以下命令:
npm install cheerio
接下来,你可以像下面这样引入Cheerio并开始操作HTML:
// 引入cheerio
const cheerio = require('cheerio');
// 加载HTML字符串
const $ = cheerio.load('<h2 class="title">Hello world</h2>');
// 修改文本内容
$('h2.title').text('你好,世界!');
// 添加类名
$('h2').addClass('welcome');
// 输出最终的HTML
console.log($.html());
此代码片段将打印出修改后的HTML,显示文本已更改为"你好,世界!"且添加了额外的类名welcome。
应用案例和最佳实践
网页抓取与数据提取
Cheerio常用于从网页中提取数据。例如,如果你想要抓取新闻网站的头条新闻标题,可以发送HTTP请求获取页面内容,然后使用Cheerio来定位和提取这些标题。
最佳实践中,确保对目标网站的爬取频率合理,尊重robots.txt规则,以及尽可能减少对网站服务器的影响。
// 假定你已经用axios或其他工具获取了htmlContent
const htmlContent = '<div class="news-headline"><h3>最新资讯</h3></div>';
const $ = cheerio.load(htmlContent);
const headline = $('.news-headline h3').text();
console.log(headline); // "最新资讯"
典型生态项目
Cheerio因其简洁高效,在多个场景下被广泛采用,特别是在需要进行网页数据处理、服务端渲染预览或构建基于Node.js的爬虫项目时。虽然没有特定的"生态系统"列表,但Cheerio常常与其他工具如Express、Puppeteer等结合使用,来增强web开发的灵活性和效率。
在构建服务端模板渲染、自动化测试、或者做简单的数据爬虫时,Cheerio是不可或缺的工具之一。它与前端的jQuery有着相似的操作方式,使得开发者能够轻松上手,提高开发效率。
以上就是Cheerio.js的基本介绍、快速启动指南、应用案例以及它在技术栈中的位置概览。利用Cheerio,你可以高效地进行服务器端的HTML文档操作,丰富你的Node.js应用功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00