DataProfiler 项目教程
1. 项目目录结构及介绍
DataProfiler 项目的目录结构如下:
DataProfiler/
├── dataprofiler/
│ ├── __init__.py
│ ├── data_readers/
│ ├── profilers/
│ ├── utils/
│ └── ...
├── examples/
│ ├── example1.py
│ ├── example2.py
│ └── ...
├── resources/
│ ├── resource1.txt
│ ├── resource2.txt
│ └── ...
├── .gitignore
├── pre-commit-config.yaml
├── CODEOWNERS
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.md
├── pylintrc
├── requirements-dev.txt
├── requirements-ml.txt
├── requirements-reports.txt
├── requirements-test.txt
├── requirements.txt
├── setup.cfg
├── setup.py
├── tox.ini
└── ...
目录结构介绍
-
dataprofiler/: 核心代码目录,包含数据读取、数据分析、数据监控等功能模块。
- data_readers/: 数据读取模块,支持多种数据格式(如 CSV、JSON、Parquet 等)。
- profilers/: 数据分析和监控模块,负责生成数据概要和统计信息。
- utils/: 工具模块,包含一些辅助函数和工具类。
-
examples/: 示例代码目录,包含多个使用 DataProfiler 的示例脚本。
-
resources/: 资源文件目录,包含项目所需的资源文件。
-
.gitignore: Git 忽略文件配置。
-
pre-commit-config.yaml: 预提交钩子配置文件。
-
CODEOWNERS: 代码所有者配置文件。
-
LICENSE: 项目许可证文件。
-
MANIFEST.in: 打包清单文件。
-
Makefile: 项目构建和自动化任务配置文件。
-
README.md: 项目说明文档。
-
pylintrc: Pylint 配置文件。
-
requirements-dev.txt: 开发依赖包列表。
-
requirements-ml.txt: 机器学习依赖包列表。
-
requirements-reports.txt: 报告生成依赖包列表。
-
requirements-test.txt: 测试依赖包列表。
-
requirements.txt: 项目依赖包列表。
-
setup.cfg: 项目配置文件。
-
setup.py: 项目安装脚本。
-
tox.ini: Tox 配置文件,用于多环境测试。
2. 项目启动文件介绍
DataProfiler 项目的启动文件是 setup.py
。该文件负责项目的安装和配置。通过运行以下命令可以安装 DataProfiler:
pip install .
setup.py
文件的主要功能包括:
- 定义项目的元数据(如名称、版本、作者等)。
- 指定项目的依赖包。
- 配置项目的入口点(entry points)。
3. 项目的配置文件介绍
DataProfiler 项目的配置文件主要包括以下几个:
- setup.cfg: 项目配置文件,包含项目的元数据、依赖包、入口点等信息。
- pylintrc: Pylint 配置文件,用于代码风格检查。
- tox.ini: Tox 配置文件,用于多环境测试。
- pre-commit-config.yaml: 预提交钩子配置文件,用于在提交代码前执行一些自动化任务(如代码格式化、静态分析等)。
setup.cfg
setup.cfg
文件的主要内容如下:
[metadata]
name = DataProfiler
version = 0.3.2
author = Jeremy Goodsitt, Austin Walters, Anh Truong, Grant Eden
license = Apache Software License (Apache License, Version 2.0)
description = A Python library designed to make data analysis, monitoring, and sensitive data detection easy.
[options]
packages = find:
install_requires =
pandas
numpy
...
[options.entry_points]
console_scripts =
dataprofiler = dataprofiler.cli:main
pylintrc
pylintrc
文件用于配置 Pylint 的代码风格检查规则。
tox.ini
tox.ini
文件用于配置 Tox 的多环境测试。
pre-commit-config.yaml
pre-commit-config.yaml
文件用于配置预提交钩子,确保在提交代码前执行一些自动化任务。
通过这些配置文件,DataProfiler 项目可以实现代码风格检查、多环境测试、自动化任务等功能,确保项目的质量和稳定性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









