在ARM架构下编译部署Pika数据库的技术实践
2025-06-04 19:03:51作者:伍希望
背景介绍
Pika是一款由360公司开发的高性能NoSQL数据库,兼容Redis协议但底层采用持久化存储设计。在实际生产环境中,ARM架构服务器因其高性价比和低功耗特性越来越受欢迎。本文将详细介绍在ARM架构服务器上编译部署Pika数据库的技术实践过程。
环境准备
在ARM架构服务器上编译Pika前,需要确保系统环境满足以下要求:
- 操作系统:建议使用主流Linux发行版,如CentOS、Ubuntu等
- 编译器:GCC 11.4.0或更高版本(支持C++17标准)
- 构建工具:CMake 3.18或更高版本
- 依赖库:autoconf等基础开发工具
常见编译问题及解决方案
1. C++编译器识别失败
在初始编译阶段,CMake可能无法正确识别C++编译器,报错信息通常为:
The C++ compiler is not able to compile a simple test program
解决方案:
- 确保系统已安装g++编译器
- 检查环境变量PATH设置是否正确
- 显式指定C++编译器路径:
cmake -DCMAKE_CXX_COMPILER=/usr/bin/g++ ..
2. autoconf工具缺失
使用build.sh脚本编译时可能遇到autoconf工具缺失的问题:
not find autoconf on localhost
解决方案:
- 对于CentOS/RHEL系统:
yum install autoconf
- 对于Ubuntu/Debian系统:
apt-get install autoconf
3. GCC版本过低导致的编译错误
使用较旧版本的GCC(如7.3)编译时可能出现标准库兼容性问题:
error: there are no arguments to 'pthread_cond_clockwait'
解决方案:
- 升级GCC至11.4.0或更高版本
- 确保新版本GCC已正确配置为系统默认编译器
4. 第三方库编译失败
在编译过程中,gtest、gflags等第三方依赖库可能出现编译失败:
Command failed: 'make' '-j2'
解决方案:
- 检查对应库的编译日志文件(如gtest-build-*.log)
- 适当降低并行编译线程数:
make -j1
- 确保系统有足够的内存资源
最佳实践建议
-
使用官方推荐的环境:参考Pika项目的GitHub Actions工作流配置,使用与之匹配的编译环境
-
分步调试:
- 先单独编译各依赖组件
- 确认每个组件都能成功编译后再进行整体构建
-
资源管理:
- ARM服务器通常核心数较少,建议适当减少并行编译线程数
- 确保编译环境有足够的交换空间
-
版本选择:
- 使用Pika的稳定版本而非开发版
- 各组件版本保持兼容性
总结
在ARM架构服务器上成功编译部署Pika数据库需要特别注意编译器版本和系统依赖的兼容性。通过合理配置编译环境、解决依赖关系问题,并遵循系统资源管理的最佳实践,可以顺利完成Pika在ARM平台上的部署。这一过程不仅适用于Pika,对于其他需要在ARM架构上编译的复杂C++项目也具有参考价值。
随着ARM服务器在数据中心中的普及,掌握这类跨架构编译部署技能将成为开发者和运维人员的重要能力。希望本文能为需要在ARM环境下使用Pika数据库的技术人员提供实用指导。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0258PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
918
550

飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署)
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8

React Native鸿蒙化仓库
C++
193
273

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16