liburing项目中的IO轮询性能对比分析:io_uring vs epoll
引言
在现代高性能服务器开发中,I/O多路复用技术是核心组件之一。传统的epoll系统调用已经服务我们多年,而io_uring作为Linux内核提供的新一代异步I/O接口,正在逐渐被广泛采用。本文将基于liburing项目的实际测试数据,深入分析io_uring与epoll在文件描述符轮询方面的性能差异。
测试环境与方法
测试采用了两种不同的轮询模式:
- 定时等待模式:使用1秒超时的等待方式(如
io_uring_wait_cqes()或epoll_wait()) - 忙轮询模式:无阻塞的紧密循环检查(如
io_uring_peek_cqe()或epoll_wait(0))
测试平台包括Intel i9-12900F和AMD EPYC 7763处理器,内核版本为6.1。测试程序通过管道进行进程间通信,测量从写入到唤醒的完整延迟周期。
性能数据对比
在Intel i9-12900F平台上,核心测试结果如下(单位纳秒):
| 模式 | 平均延迟 | 中位数 | 90%分位 | 99%分位 |
|---|---|---|---|---|
| io_uring定时等待 | 4058 | 3773 | 4876 | 7336 |
| io_uring忙轮询 | 1988 | 1936 | 2110 | 2827 |
| epoll定时等待 | 4331 | 4035 | 5448 | 7575 |
| epoll忙轮询 | 1316 | 1294 | 1499 | 1986 |
当使用IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG标志时,io_uring的忙轮询性能提升至1505纳秒(平均),接近epoll的水平。
关键发现
-
常规场景性能相当:在定时等待模式下,io_uring和epoll表现出相似的性能特征,平均延迟差异在可接受范围内。
-
忙轮询模式差异:epoll在忙轮询模式下表现出约10-20%的性能优势(约100-200纳秒)。这是由于io_uring需要处理任务工作(taskwork),要么通过中断,要么通过系统调用。
-
CPU亲和性影响:当生产者和消费者线程被固定到隔离的"无滴答"核心上时,两种技术的延迟都显著降低,但相对性能趋势保持不变。
io_uring标志位的影响
测试中探索了多个io_uring标志位的组合效果:
IORING_SETUP_COOP_TASKRUN:避免IPI中断,但不强制用户空间任务进入内核处理任务工作IORING_SETUP_TASKRUN_FLAG:与上述标志配合使用IORING_SETUP_DEFER_TASKRUN:将任务工作保持私有,仅在等待事件或调用io_uring_get_events()时运行
值得注意的是,COOP_TASKRUN和DEFER_TASKRUN不应同时使用,正确的组合应该是COOP_TASKRUN | TASKRUN_FLAG或DEFER_TASKRUN | SINGLE_ISSUER。
实际应用建议
-
选择合适的轮询模式:对于主要使用共享内存环进行通信但仍需轮询文件描述符的场景,io_uring的忙轮询模式表现良好。
-
谨慎使用忙轮询:虽然忙轮询可以减少延迟,但会显著增加CPU使用率,应根据实际需求权衡。
-
考虑CPU亲和性:对于延迟敏感型应用,将相关线程绑定到特定核心可以显著提高性能。
-
文件描述符类型选择:管道虽然便于测试,但不能完全代表网络工作负载的唤醒特性,实际应用中应根据使用场景选择合适的IPC机制。
结论
io_uring作为epoll的替代方案,在基本文件描述符轮询功能上表现出与epoll相当的性能。在大多数场景下,两者的差异可以忽略不计。对于特定高性能场景,通过合理配置io_uring的标志位,可以获得接近甚至优于epoll的性能表现。开发者应根据具体应用场景和性能需求,选择最适合的I/O多路复用技术。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00