liburing项目中的IO轮询性能对比分析:io_uring vs epoll
引言
在现代高性能服务器开发中,I/O多路复用技术是核心组件之一。传统的epoll系统调用已经服务我们多年,而io_uring作为Linux内核提供的新一代异步I/O接口,正在逐渐被广泛采用。本文将基于liburing项目的实际测试数据,深入分析io_uring与epoll在文件描述符轮询方面的性能差异。
测试环境与方法
测试采用了两种不同的轮询模式:
- 定时等待模式:使用1秒超时的等待方式(如
io_uring_wait_cqes()或epoll_wait()) - 忙轮询模式:无阻塞的紧密循环检查(如
io_uring_peek_cqe()或epoll_wait(0))
测试平台包括Intel i9-12900F和AMD EPYC 7763处理器,内核版本为6.1。测试程序通过管道进行进程间通信,测量从写入到唤醒的完整延迟周期。
性能数据对比
在Intel i9-12900F平台上,核心测试结果如下(单位纳秒):
| 模式 | 平均延迟 | 中位数 | 90%分位 | 99%分位 |
|---|---|---|---|---|
| io_uring定时等待 | 4058 | 3773 | 4876 | 7336 |
| io_uring忙轮询 | 1988 | 1936 | 2110 | 2827 |
| epoll定时等待 | 4331 | 4035 | 5448 | 7575 |
| epoll忙轮询 | 1316 | 1294 | 1499 | 1986 |
当使用IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG标志时,io_uring的忙轮询性能提升至1505纳秒(平均),接近epoll的水平。
关键发现
-
常规场景性能相当:在定时等待模式下,io_uring和epoll表现出相似的性能特征,平均延迟差异在可接受范围内。
-
忙轮询模式差异:epoll在忙轮询模式下表现出约10-20%的性能优势(约100-200纳秒)。这是由于io_uring需要处理任务工作(taskwork),要么通过中断,要么通过系统调用。
-
CPU亲和性影响:当生产者和消费者线程被固定到隔离的"无滴答"核心上时,两种技术的延迟都显著降低,但相对性能趋势保持不变。
io_uring标志位的影响
测试中探索了多个io_uring标志位的组合效果:
IORING_SETUP_COOP_TASKRUN:避免IPI中断,但不强制用户空间任务进入内核处理任务工作IORING_SETUP_TASKRUN_FLAG:与上述标志配合使用IORING_SETUP_DEFER_TASKRUN:将任务工作保持私有,仅在等待事件或调用io_uring_get_events()时运行
值得注意的是,COOP_TASKRUN和DEFER_TASKRUN不应同时使用,正确的组合应该是COOP_TASKRUN | TASKRUN_FLAG或DEFER_TASKRUN | SINGLE_ISSUER。
实际应用建议
-
选择合适的轮询模式:对于主要使用共享内存环进行通信但仍需轮询文件描述符的场景,io_uring的忙轮询模式表现良好。
-
谨慎使用忙轮询:虽然忙轮询可以减少延迟,但会显著增加CPU使用率,应根据实际需求权衡。
-
考虑CPU亲和性:对于延迟敏感型应用,将相关线程绑定到特定核心可以显著提高性能。
-
文件描述符类型选择:管道虽然便于测试,但不能完全代表网络工作负载的唤醒特性,实际应用中应根据使用场景选择合适的IPC机制。
结论
io_uring作为epoll的替代方案,在基本文件描述符轮询功能上表现出与epoll相当的性能。在大多数场景下,两者的差异可以忽略不计。对于特定高性能场景,通过合理配置io_uring的标志位,可以获得接近甚至优于epoll的性能表现。开发者应根据具体应用场景和性能需求,选择最适合的I/O多路复用技术。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00