John the Ripper构建系统中SIMD标志的传递优化
在John the Ripper密码分析工具的构建系统中,存在一个关于SIMD(单指令多数据流)指令集标志传递的优化问题。这个问题最初在项目内部讨论中被发现,涉及到如何将主构建的SIMD编译标志正确传递到子目录的库构建过程中。
问题背景
现代CPU支持的SIMD指令集(如SSE、AVX、AES-NI等)可以显著加速密码哈希计算。John the Ripper作为性能敏感的密码分析工具,充分利用这些指令集是其核心优化手段之一。然而在当前构建系统中,子目录(如mbedtls等第三方库)的编译过程并未继承主构建的SIMD相关编译标志。
这种分离的编译方式可能导致两个问题:
- 子模块无法利用与主程序相同的CPU特性,造成性能损失
- 在VEX编码指令和传统SSE代码之间可能出现性能下降的转换
技术分析
通过分析项目中的Makefile.in文件,我们可以看到当前的编译标志处理机制:
主Makefile.in中定义了多组编译标志:
- CFLAGSX:基础编译标志集合
- CFLAGS_MAIN:专用于john.c主文件的特殊标志
- CFLAGS:通用编译标志
问题根源在于子目录的Makefile.in没有完整继承这些标志,特别是缺少@CC_CPU@和@CC_MAIN_CPU@等关键SIMD相关标志。
解决方案
项目维护者提出了两种解决思路:
-
全面重构方案:修改configure.ac,使@CFLAGS@包含所有必要标志,然后简化Makefile中的标志处理逻辑。
-
快速修复方案:在子目录的Makefile.in中标准化编译标志定义,确保包含所有必要的SIMD相关标志。
考虑到改动范围和影响,项目决定采用第二种方案,即在子目录Makefile.in中使用如下标准化定义:
CFLAGS = -c -DAC_BUILT @CC_CPU@ @CC_MAIN_CPU@ @CFLAGS@ @JOHN_NO_SIMD@ @CFLAGS_EXTRA@ @OPENSSL_CFLAGS@ @OPENMP_CFLAGS@ @HAVE_MPI@ @PTHREAD_CFLAGS@ @CPPFLAGS@
实施细节
对于特定的AES-NI指令集支持问题(#5593),解决方案是将-maes -mpclmul标志添加到@CC_CPU@中,这样就能自动传播到所有子目录的构建过程中。
性能考量
值得注意的是,这种改变可能会在某些CPU上引起性能回退,特别是从汇编代码切换到内部函数(intrinsics)的实现时。项目团队决定先解决功能完整性问题,性能优化将作为后续工作单独处理。这种分阶段处理的策略既保证了构建系统的正确性,又为后续针对性优化保留了空间。
总结
这次构建系统的优化确保了John the Ripper能够更一致地利用现代CPU的SIMD指令集,特别是在处理加密原语时。通过标准化子目录的编译标志处理,不仅解决了当前的问题,还为未来的构建系统改进奠定了基础。对于密码分析这种对性能极其敏感的应用,这类底层优化往往能带来显著的性能提升。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00