Tenstorrent/tt-metal v0.59.0-rc15 版本技术解析与优化亮点
Tenstorrent/tt-metal 是一个专注于高性能AI计算的开源项目,主要针对AI推理和训练场景提供底层硬件加速支持。该项目通过创新的架构设计,为深度学习工作负载提供高效的执行环境。最新发布的v0.59.0-rc15版本带来了多项重要改进和功能增强。
核心架构优化
本次版本在底层架构方面进行了多项重要改进。首先是对设备初始化和内存管理的优化,将FW构建和L1/DRAM清除操作从设备初始化阶段移至MetalContext初始化阶段,这一调整显著提升了设备启动效率。同时,项目团队重构了缓冲区管理机制,移除了主机端缓冲区分配/释放的概念,简化了内存管理流程。
在路由机制方面,新版本增强了2D Fabric支持,包括优化了intermesh路由到下一个mesh的性能,并修复了West路由器边缘端口在intermesh路由中的问题。这些改进使得多设备间的数据传输更加高效稳定。
性能提升与功能增强
新版本在性能优化方面做了大量工作。针对Topk操作进行了扩展以支持sub_core_grid,并充分利用列中可用的最大核心数。Argmax操作也得到改进,现在能根据NOC宽度调整每个核心的处理单元数量,提高了并行效率。
在数学运算方面,项目增加了对uint16数据类型的支持,包括乘法、按位或和异或操作。同时修复了除法运算的测试范围,并清理了相关代码。这些改进使得项目能更好地支持多样化的计算需求。
模型支持与演示增强
本次更新加强了多个流行模型的支持。Mobilenetv2和VGG_Unet模型的演示功能得到完善,Yolov8x和Yolov9c模型也进行了相应调整。特别值得注意的是,项目集成了VAE解码器到SDv1-4演示中,扩展了生成式AI应用场景。
在大型语言模型方面,项目为Llama-3.1-8B-Instruct模型重写了"performance"解码器精度,并解决了Llama TG解码在超过4k序列长度时的挂起问题。同时新增了MistralForCausalLM类以支持vLLM框架。
测试与稳定性改进
新版本在测试覆盖率和稳定性方面做了大量工作。增加了多设备Eltwise和TM压力测试,以及连接打开/关闭压力测试。修复了多个测试用例,包括针对Blackhole设备的特殊处理,确保测试在不同硬件平台上都能稳定运行。
调试工具也得到增强,包括改进的trace缓冲区大小和更完善的watcher更新,这些工具帮助开发者更有效地诊断和解决问题。
开发体验优化
项目在开发者体验方面做了多项改进。清理了大量未使用的文件和过时的API,重构了代码组织结构,使代码库更加整洁。同时改进了构建系统,包括将ttnn目标安装移动到正确的CMakeLists文件中,并修复了PCH构建问题。
文档方面也进行了更新,包括安装指南和模型更新说明,帮助新用户更快上手项目。这些改进使得项目更易于维护和扩展。
总体而言,Tenstorrent/tt-metal v0.59.0-rc15版本在性能、功能和稳定性方面都有显著提升,为AI计算提供了更加强大和可靠的底层支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00