Tenstorrent/tt-metal v0.59.0-rc15 版本技术解析与优化亮点
Tenstorrent/tt-metal 是一个专注于高性能AI计算的开源项目,主要针对AI推理和训练场景提供底层硬件加速支持。该项目通过创新的架构设计,为深度学习工作负载提供高效的执行环境。最新发布的v0.59.0-rc15版本带来了多项重要改进和功能增强。
核心架构优化
本次版本在底层架构方面进行了多项重要改进。首先是对设备初始化和内存管理的优化,将FW构建和L1/DRAM清除操作从设备初始化阶段移至MetalContext初始化阶段,这一调整显著提升了设备启动效率。同时,项目团队重构了缓冲区管理机制,移除了主机端缓冲区分配/释放的概念,简化了内存管理流程。
在路由机制方面,新版本增强了2D Fabric支持,包括优化了intermesh路由到下一个mesh的性能,并修复了West路由器边缘端口在intermesh路由中的问题。这些改进使得多设备间的数据传输更加高效稳定。
性能提升与功能增强
新版本在性能优化方面做了大量工作。针对Topk操作进行了扩展以支持sub_core_grid,并充分利用列中可用的最大核心数。Argmax操作也得到改进,现在能根据NOC宽度调整每个核心的处理单元数量,提高了并行效率。
在数学运算方面,项目增加了对uint16数据类型的支持,包括乘法、按位或和异或操作。同时修复了除法运算的测试范围,并清理了相关代码。这些改进使得项目能更好地支持多样化的计算需求。
模型支持与演示增强
本次更新加强了多个流行模型的支持。Mobilenetv2和VGG_Unet模型的演示功能得到完善,Yolov8x和Yolov9c模型也进行了相应调整。特别值得注意的是,项目集成了VAE解码器到SDv1-4演示中,扩展了生成式AI应用场景。
在大型语言模型方面,项目为Llama-3.1-8B-Instruct模型重写了"performance"解码器精度,并解决了Llama TG解码在超过4k序列长度时的挂起问题。同时新增了MistralForCausalLM类以支持vLLM框架。
测试与稳定性改进
新版本在测试覆盖率和稳定性方面做了大量工作。增加了多设备Eltwise和TM压力测试,以及连接打开/关闭压力测试。修复了多个测试用例,包括针对Blackhole设备的特殊处理,确保测试在不同硬件平台上都能稳定运行。
调试工具也得到增强,包括改进的trace缓冲区大小和更完善的watcher更新,这些工具帮助开发者更有效地诊断和解决问题。
开发体验优化
项目在开发者体验方面做了多项改进。清理了大量未使用的文件和过时的API,重构了代码组织结构,使代码库更加整洁。同时改进了构建系统,包括将ttnn目标安装移动到正确的CMakeLists文件中,并修复了PCH构建问题。
文档方面也进行了更新,包括安装指南和模型更新说明,帮助新用户更快上手项目。这些改进使得项目更易于维护和扩展。
总体而言,Tenstorrent/tt-metal v0.59.0-rc15版本在性能、功能和稳定性方面都有显著提升,为AI计算提供了更加强大和可靠的底层支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00