.NET 高性能 HTTP 客户端库 Oryx 的最佳实践
1. 项目介绍
Oryx 是一个高性能的 .NET 跨平台功能 HTTP 请求处理器库,使用 F# 语言编写。它旨在用于创建 HTTP 客户端以及编排 Web 请求。Oryx currently 被用于 .NET SDK 中,以便与 Cognite Data Fusion (CDF) 进行交互。它借鉴了 AsyncRx 和 Giraffe 框架的设计理念,将这些理念应用于客户端发起的 Web 请求处理。
2. 项目快速启动
在您的项目中使用 Oryx 非常简单。首先,您需要通过 NuGet 包管理器安装 Oryx 包。
使用 NuGet 包管理器控制台执行以下命令:
Install-Package Oryx
或者,如果您使用 .NET CLI,可以执行:
dotnet add package Oryx
接下来,您可以使用以下示例代码快速启动一个 HTTP 请求:
open System.Net.Http
open System.Text.Json
open FSharp.Control.Tasks.V2
open Oryx
open Oryx.SystemTextJson.ResponseReader
[<Literal>]
let Url = "https://en.wikipedia.org/w/api.php"
let options = JsonSerializerOptions()
let query term = [
struct ("action", "opensearch")
struct ("search", term)
]
let asyncMain argv = task {
use client = new HttpClient()
let request term =
httpRequest
|> GET
|> withHttpClient client
|> withUrl Url
|> withQuery (query term)
|> fetch
|> json options
let! result = request "F#"
printfn "Result: %A" result
}
[<EntryPoint>]
let main argv =
asyncMain argv
|> Async.AwaitTask
|> ignore
0 // 返回一个整数退出码
确保您已经正确处理了异步操作,并在适当的地方使用 await。
3. 应用案例和最佳实践
编写 HTTP 请求处理器
Oryx 的核心是 HttpContext 和 HttpHandler。HttpContext 包含了发起请求所需的所有状态,以及从远程服务器接收的任何响应元数据,如头部信息、响应代码等。
type Context = {
Request: HttpRequest
Response: HttpResponse
}
type IHttpNext<'TSource> = abstract member OnSuccessAsync: ctx: HttpContext * content: 'TSource -> Task<unit>
abstract member OnErrorAsync: ctx: HttpContext * error: exn -> Task<unit>
abstract member OnCancelAsync: ctx: HttpContext -> Task<unit>
type HttpHandler<'TSource> = IHttpNext<'TSource> -> Task<unit>
您可以组合不同的 HTTP 处理器来创建复杂的请求流程。例如,使用 withBearerToken 添加认证信息,或者使用 cache 来缓存请求结果。
处理 HTTP 响应
处理响应时,您可以使用如 parseAsync 方法将响应流异步解析为指定的类型:
let! result = request
|> parseAsync<MyResponseType> // 解析为自定义类型
确保您已经定义了相应的数据类型来匹配 JSON 响应的结构。
4. 典型生态项目
在 Oryx 生态中,您可以找到一些常用的 HTTP 处理器,如缓存、错误处理、并发请求等。这些处理器可以作为构建复杂 HTTP 客户端的基础模块。
例如,使用 concurrent 处理器可以并发运行多个 HTTP 请求:
let concurrentRequest =
httpRequest
|> concurrent [requestA; requestB; requestC]
|> withHttpClient client
在这里,requestA、requestB 和 requestC 是之前定义的 HTTP 请求处理器。
以上是使用 Oryx 的基础介绍和最佳实践。在实际项目中,您可以根据具体需求调整和组合不同的处理器,以实现高效的 HTTP 请求管理。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00