scGPT-spatial 项目亮点解析
2025-06-16 13:35:18作者:宣利权Counsellor
1. 项目的基础介绍
scGPT-spatial 是一个基于单细胞基础模型的持续预训练项目,旨在为空间转录组学提供强大的分析工具。该项目通过整合空间转录组数据,实现单细胞水平的高精度分析,特别适用于处理大规模的空间转录组数据集。
2. 项目代码目录及介绍
项目的主要代码目录如下:
scGPT-spatial/
├── data/ # 存储预处理后的数据集
├── models/ # 包含模型定义和预训练代码
├── tutorials/ # 提供使用教程和示例代码
├── scripts/ # 包含运行模型的各种脚本
├── README.md # 项目说明文件
└── LICENSE # 开源协议文件
data/:存储项目所需的预处理后的空间转录组数据集。models/:包含构建和训练 scGPT-spatial 模型的代码。tutorials/:提供从环境搭建到模型使用的详细教程,以及相关示例代码。scripts/:包含用于数据预处理、模型训练和测试的各种脚本。
3. 项目亮点功能拆解
- 空间转录组数据分析:项目支持多种空间转录组技术,如 Visium、Visium HD、Xenium 和 MERFISH,能够处理不同平台的数据。
- 多模态和多切片整合:支持整合来自不同模态和不同切片的数据,提供全面的空间转录组分析。
- 细胞类型反卷积:能够根据空间转录组数据,推断出细胞类型的分布。
- 缺失基因插补:通过模型预测缺失的基因表达信息,提高数据完整性。
4. 项目主要技术亮点拆解
- 持续预训练:项目采用持续预训练策略,不断学习新的数据,提高模型在空间转录组数据上的表现。
- Mixture of Experts (MoE) 解码器:使用 MoE 解码器,能够提高模型的表达能力,更好地捕捉空间转录组的复杂特征。
- 空间感知采样:引入空间感知采样方法,使得模型能够更有效地利用空间信息。
- 邻域重建目标:利用邻域信息进行数据重建,提高模型对空间关系的建模能力。
5. 与同类项目对比的亮点
- 数据集规模:scGPT-spatial 使用了大规模的 SpatialHuman30M 数据集进行预训练,相比同类项目,其模型具有更强的泛化能力和更高的准确性。
- 模型创新性:项目采用了多种创新技术,如 MoE 解码器和空间感知采样,这些技术使得模型在空间转录组分析领域具有独特的优势。
- 开放性和灵活性:项目遵循 MIT 协议开源,用户可以根据需要灵活修改和使用代码,具有很高的开放性和适应性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216