Liger-Kernel v0.5.6版本发布:多模态支持与训练优化全面升级
Liger-Kernel是一个专注于深度学习模型训练优化的开源框架,特别针对大规模语言模型和多模态模型的训练进行了深度优化。最新发布的v0.5.6版本带来了多项重要更新,包括对Paligemma多模态模型的支持、Dynamic Tanh(DyT)训练技术的引入、XPU设备优化以及Llava视觉语言模型的集成等。
多模态模型支持扩展
本次更新最显著的特点是加强了对多模态模型的支持。Paligemma作为一种结合视觉和语言能力的多模态模型,现在可以在Liger-Kernel中无缝运行。开发团队特别处理了Paligemma 1与Gemma 1语言模型的兼容性问题,确保了模型结构的正确加载和训练。
同时,Llava视觉语言模型也被集成到框架中。Llava能够处理图像和文本的联合输入,实现跨模态的理解和生成。团队修复了Llava在反向传播测试中的问题,使其训练过程更加稳定可靠。
训练技术与优化改进
v0.5.6版本引入了Dynamic Tanh(DyT)训练技术,这是一种动态调整激活函数范围的技术,能够根据训练过程中的数据分布自动优化tanh激活函数的输出范围,提升模型训练的稳定性和收敛速度。
在损失函数方面,团队对GRPO(Generalized Reinforcement Policy Optimization)进行了重要修正,使其与TRL(Transformer Reinforcement Learning)框架保持一致。这包括损失计算的修正、测试精度的提升以及指标计算的规范化,使强化学习训练更加准确可靠。
针对分块损失计算(chunked loss),团队改进了教师模型和学生模型对数形状的对齐方式,确保知识蒸馏过程中信息传递的准确性。此外,还修正了log_target计算中的条件判断问题,提升了损失计算的精确度。
硬件支持与性能优化
本次更新加强了对XPU设备的支持,包括在交叉熵损失(CE)和FLJSD(Focal Length Jensen-Shannon Divergence)计算中加入了XPU调优选项。这使得Liger-Kernel能够在更多类型的硬件设备上高效运行。
为了提升在AMD硬件上的兼容性,团队调整了测试环境,使用ROCm 6.3版本,并修改了容错参数(tolerance),确保框架能够在AMD平台上稳定运行。
框架稳定性与易用性改进
在框架稳定性方面,修复了当monkey_patch应用于已实例化模型时模块名称不正确的问题,提升了代码的健壮性。同时,团队还优化了损失工具(loss_utils),为重写lce_forward方法提供了更好的支持。
文档方面也进行了多项更新,包括README文件的修订和Star History URL的更新,使新用户能够更快上手使用框架。
总结
Liger-Kernel v0.5.6版本在多模态支持、训练技术优化和硬件兼容性方面都取得了显著进展。这些改进不仅扩展了框架的应用范围,也提升了训练效率和稳定性,为研究人员和开发者提供了更强大的工具来探索前沿的深度学习模型。特别是对Paligemma和Llava等多模态模型的支持,为跨模态学习和应用开辟了新的可能性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









