PraisonAI多智能体协作中的上下文保持问题与解决方案
引言
在基于大语言模型(LLM)的多智能体协作框架PraisonAI中,开发者经常遇到一个典型问题:智能体在执行任务时会丢失上下文信息,特别是当涉及到特定领域(domain)参数传递时。本文将深入探讨这一问题的成因,并提供基于现有框架特性的解决方案。
问题现象
在PraisonAI的实际应用中,开发者设置了一个针对特定域名(如"eenadu.net")的安全扫描工作流。该工作流包含多个智能体:
- 管理智能体(Manager Agent):协调工作流程
- 工具智能体(Tool Agent):执行各类扫描工具
- 安全测试智能体(Security Tester Agent):分析潜在风险
- CISO智能体:提供安全建议
尽管在代码中明确指定了目标域名,但在实际执行过程中,工具智能体却反复使用默认域名"example.com"而非指定的"eenadu.net",导致整个工作流失效。
根本原因分析
经过深入探讨,我们发现这一问题源于PraisonAI框架中的几个关键特性:
-
工具默认参数隔离:工具函数虽然定义了默认参数(如domain="eenadu.net"),但这些默认值仅在直接调用工具时生效。当工具通过智能体间接调用时,LLM生成的函数参数会覆盖这些默认值。
-
上下文传递断层:虽然任务描述和智能体配置中包含域名信息,但这些上下文信息不会自动传递到工具执行层面。
-
多智能体协作特性:在分层(hierarchical)处理模式下,各智能体间的上下文共享机制不够明确,导致关键信息丢失。
解决方案
基于PraisonAI现有特性,我们提出以下多层解决方案,无需修改框架核心代码:
1. 自定义工具包装器
创建领域感知(domain-aware)的工具包装函数,确保在没有明确参数时使用目标域名:
def create_domain_tools(target_domain):
def wrapped_query_fofa(query: str = None) -> dict:
query = query or target_domain # 使用目标域名作为默认值
return original_query_fofa(query)
return wrapped_query_fofa
2. 智能体指令强化
在智能体配置中明确嵌入域名上下文:
tool_agent = Agent(
name="Tool Agent",
role=f"执行针对{target_domain}的扫描工具",
goal=f"收集{target_domain}的子域名、DNS记录等信息",
backstory=f"专注于分析{target_domain}的专家,从不使用example.com",
tools=[...],
)
3. 任务上下文参数
利用PraisonAI现有的context参数传递域名信息:
tool_query_task = Task(
name="tool_query_task",
description="执行初始域名数据收集",
context=[f"目标域名: {target_domain}"],
agent=tool_agent
)
4. 共享内存配置
通过内存系统保持上下文一致性:
agents = PraisonAIAgents(
agents=[...],
tasks=[...],
memory=True,
memory_config={
"provider": "rag",
"use_embedding": True
}
)
最佳实践建议
-
多层防护:同时使用上述多种方法,确保即使某一层失效,其他层仍能保持正确上下文。
-
明确性优先:在任务描述和智能体指令中多次重复关键参数,提高LLM的注意力。
-
测试验证:实现后应验证工具调用参数,确保确实使用了指定域名而非默认值。
-
文档记录:在团队内部明确记录上下文传递机制,便于协作维护。
结论
PraisonAI作为多智能体协作框架,其灵活的设计允许开发者通过多种方式解决上下文保持问题。通过合理组合使用工具包装、智能体指令强化、任务上下文和共享内存等现有特性,开发者可以构建出稳定可靠的领域特定工作流,避免"example.com"等默认值干扰实际业务需求。这一解决方案不仅适用于网络安全扫描场景,也可推广至其他需要保持特定上下文的智能体协作应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00