GitPython 技术文档
1. 安装指南
GitPython 是一个用于与 Git 仓库交互的 Python 库。在安装 GitPython 之前,请确保您的系统满足以下要求:
- Git (1.7.x 或更新版本)
- Python 3.7 或更高版本
安装 GitPython 的方法有以下几种:
从 PyPI 安装
运行以下命令从 PyPI 安装 GitPython:
pip install GitPython
从下载的源代码安装
如果您已下载源代码,请进入解压后的 GitPython 目录并运行以下命令:
pip install .
通过克隆源代码仓库安装
要克隆 GitHub 上的 GitPython 仓库,请按照以下步骤操作:
git clone https://github.com/gitpython-developers/GitPython
cd GitPython
./init-tests-after-clone.sh
在 Windows 上,./init-tests-after-clone.sh 可以在 Git Bash shell 中运行。
如果您克隆了自己的叉子,请将上述 git clone 命令中的 URL 替换为您的叉子的 URL。
克隆仓库后,创建并激活您的虚拟环境,然后运行以下命令进行可编辑安装:
pip install -e ".[test]"
如果不希望安装测试依赖项,可以使用 pip install -e .。
2. 项目使用说明
GitPython 提供了对 Git 仓库的高级和低级访问。以下是如何使用 GitPython 的一些基本示例:
访问仓库
import git
repo = git.Repo('path/to/your/repo')
获取提交历史
for commit in repo.iterCommits('master'):
print(commit)
创建新提交
index = repo.index
index.add(['file1.txt', 'file2.txt'])
index.commit('Your commit message here')
有关更多使用示例和详细信息,请参阅 GitPython 的官方文档。
3. 项目 API 使用文档
GitPython 的 API 文档提供了关于模块、类和方法的详细说明。以下是部分 API 的简要概述:
git.Repo 类
Repo 类是 GitPython 的主要接口,用于访问 Git 仓库。
repo.git_dir: 仓库的 Git 目录路径。repo.working_dir: 仓库的工作目录路径。repo.index: 仓库的索引对象。
git.Index 类
Index 类用于管理与当前提交相关的索引(暂存区)。
index.add(patterns): 将文件添加到索引中。index.commit(message): 创建新的提交。
git.Commit 类
Commit 类表示 Git 仓库中的一个提交。
commit.message: 提交消息。commit.tree: 提交的树对象。commit.parent: 提交的父提交。
更多 API 详细信息,请参阅官方文档。
4. 项目安装方式
GitPython 可以通过以下几种方式进行安装:
从 PyPI 安装
运行以下命令从 PyPI 安装 GitPython:
pip install GitPython
从下载的源代码安装
如果您已下载源代码,请进入解压后的 GitPython 目录并运行以下命令:
pip install .
通过克隆源代码仓库安装
要克隆 GitHub 上的 GitPython 仓库,请按照以下步骤操作:
git clone https://github.com/gitpython-developers/GitPython
cd GitPython
./init-tests-after-clone.sh
在 Windows 上,./init-tests-after-clone.sh 可以在 Git Bash shell 中运行。
如果您克隆了自己的叉子,请将上述 git clone 命令中的 URL 替换为您的叉子的 URL。
克隆仓库后,创建并激活您的虚拟环境,然后运行以下命令进行可编辑安装:
pip install -e ".[test]"
如果您不希望安装测试依赖项,可以使用 pip install -e .。
以上就是 GitPython 技术文档的内容,希望对您有所帮助。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00