DMDynamicWaterfall:动态瀑布流布局指南
项目介绍
DMDynamicWaterfall 是一个致力于实现高效且灵活的动态瀑布流布局的开源库,由 malcommac 开发并维护。这个项目特别适用于展示图片墙、商品列表等场景,其中元素大小不一,要求视觉上整齐排列的需求。它优化了计算逻辑,确保在不同尺寸屏幕和数据动态变化时都能迅速适应,提升用户体验。
项目快速启动
安装
首先,你需要通过 CocoaPods 或 Carthage 将 DMDynamicWaterfall 添加到你的 iOS 项目中。以 CocoaPods 为例:
pod 'DMDynamicWaterfall'
安装完依赖之后,在你的视图控制器中导入对应的头文件:
import DMDynamicWaterfall
使用示例
创建瀑布流视图,并配置基本参数:
let瀑布流视图 = DMDynamicWaterfallCollectionView(frame: CGRect(x: 0, y: 0, width: view.bounds.width, height: view.bounds.height))
瀑布流视图.dataSource = self
view.addSubview(瀑布流视图)
// 实现DataSource方法
extension YourViewController: UICollectionViewDataSource {
func numberOfSections(in collectionView: UICollectionView) -> Int {
// 返回分组数,根据需求而定
return 1
}
func collectionView(_ collectionView: UICollectionView, numberOfItemsInSection section: Int) -> Int {
// 根据实际数据源返回项的数量
return 数据源.count
}
func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
let cell = collectionView.dequeueReusableCell(withReuseIdentifier: "YourCellIdentifier", for: indexPath)
// 配置cell,例如设置图片等
return cell
}
// 可选:定制布局属性
func collectionView(_ collectionView: UICollectionView, layout collectionViewLayout: UICollectionViewLayout, sizeForItemAt indexPath: IndexPath) -> CGSize {
// 返回每个item的大小,通常基于数据来决定
let itemWidth = view.bounds.width / 3.0 // 假设三列
return CGSize(width: itemWidth, height: 计算的高度)
}
}
记得替换 "YourCellIdentifier" 和具体的cell配置逻辑。
应用案例和最佳实践
在构建新闻阅读应用的商品浏览页或社交媒体的照片展示区时,DMDynamicWaterfall 展现出其强大的能力。关键在于合理设计数据模型,预加载机制和优化内存管理,确保即使在大量图片加载时,也能保持流畅的滚动体验。最佳实践包括使用懒加载图片,合理利用缓存策略,以及在数据更新时仅重新布局必要的部分。
典型生态项目
尽管直接关联的“典型生态项目”信息未从提供的链接获取,但在iOS开发社区中,类似的瀑布流应用场景广泛存在于电商平台(如淘宝、京东的小程序或App内的商品列表)、照片分享应用(如Instagram的部分界面)中。开发者可以借鉴DMDynamicWaterfall库,结合自己的产品特性,开发出适应性强、用户体验佳的动态瀑布流功能。对于想要进一步优化瀑布流展示效果的项目,考虑与其他UI动画库、图像处理库相结合,也是打造特色应用的一个方向。
此文档提供了快速入门DMDynamicWaterfall所需的基本步骤和一些高级概念的简述,旨在帮助开发者高效地集成并优化瀑布流布局于他们的iOS应用之中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00