misc-grafana-dashboards 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
misc-grafana-dashboards 是一个开源项目,它包含了一系列用于可视化 Kubernetes 集群中 Prometheus 指标的 Grafana 仪表盘。这个项目旨在帮助用户轻松监控和管理 Kubernetes 环境中的各种指标,如数据库、Docker 注册中心等。该项目主要是使用 Go 语言编写的,因为 Go 语言在构建高效的后端服务方面表现出色。
2. 项目使用的关键技术和框架
该项目使用以下关键技术和框架:
- Grafana:一个开源的可视化和分析平台,用于创建、探索和可视化指标。
- Prometheus:一个开源监控系统,用于收集和存储指标数据,并与 Grafana 配合使用。
- Kubernetes:一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。
- Docker:一个开源的应用容器引擎,用于打包、发布和运行应用程序。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下软件:
- Docker:用于运行容器化的应用程序。
- Docker Compose:用于定义和运行多容器 Docker 应用程序。
- Kubernetes:用于容器编排。
- Prometheus:用于收集和存储指标数据。
- Grafana:用于可视化指标数据。
安装步骤
-
克隆项目仓库
首先,您需要从 GitHub 上克隆该项目仓库到本地计算机:
git clone https://github.com/lstn/misc-grafana-dashboards.git cd misc-grafana-dashboards -
启动 Prometheus
在项目目录中,您可以使用 Docker Compose 启动 Prometheus:
docker-compose up -d prometheus这将启动一个 Prometheus 容器,并使其在后台运行。
-
启动 Grafana
接下来,使用 Docker Compose 启动 Grafana:
docker-compose up -d grafanaGrafana 将在后台运行,并默认监听在3000端口。
-
配置 Prometheus 和 Grafana
- 配置 Prometheus:编辑
prometheus.yml文件,添加您的 Kubernetes 集群和其他需要监控的服务的配置。 - 配置 Grafana:在 Grafana 的 Web 界面中(通常是
http://localhost:3000),添加一个新的数据源,选择 Prometheus,并配置相应的连接信息。
- 配置 Prometheus:编辑
-
导入仪表盘
打开 Grafana Web 界面,进入 "Dashboards" 部分,选择 "Import dashboard",然后上传项目中的 JSON 文件(如
Docker Registry Dashboard.json、ChartMuseum Dashboard.json、PostgreSQL Database Dashboard.json等),以导入预定义的仪表盘。 -
配置 Kubernetes 监控
如果您需要监控 Kubernetes 集群,您可能需要安装并配置相应的 Kubernetes 监控工具,例如 Prometheus Adapter 或 kube-state-metrics。
完成以上步骤后,您应该能够成功安装并配置 misc-grafana-dashboards 项目,并通过 Grafana 仪表盘监控您的 Kubernetes 集群和其他相关服务。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00