BigDL IPEX-LLM B16版本在ARC GPU上的性能优化实践
2025-05-29 12:12:35作者:邬祺芯Juliet
性能异常现象分析
在使用BigDL IPEX-LLM B16版本部署QwQ 32B大模型时,开发者在4块Intel ARC 770 GPU上观察到了异常的性能表现。测试配置为1k输入token和4k输出token的场景下,平均每个输出token的处理时间(Mean TPOT)高达30657.55毫秒,这与预期性能存在显著差距。
问题定位过程
通过深入分析,技术团队发现问题的根源在于测试脚本与模型特性的不匹配。具体表现为:
- 测试使用了随机生成的输入提示(prompt),而QwQ模型对这类随机输入可能产生大量空输出
- 性能指标计算方式存在缺陷:TPOT的计算公式是基于实际输出token数量而非预期数量
- 当模型输出大量空token时,计算公式会放大异常值的影响
解决方案与验证
针对这一问题,技术团队提出了以下解决方案:
- 改用专门设计的benchmark_serving_input.py测试脚本
- 确保输入提示具有实际语义内容,避免生成空输出
- 重新设计性能指标计算方法,使其更能反映真实场景
验证结果表明,使用合理的输入提示后,系统性能指标回归到正常水平,能够准确反映IPEX-LLM在ARC GPU上的实际处理能力。
最佳实践建议
基于这一案例,我们总结出以下大模型部署和性能测试的最佳实践:
- 测试数据准备:避免使用随机生成的输入,应准备具有实际语义的测试数据
- 性能指标设计:指标计算应考虑模型特性,避免被异常值扭曲
- 测试脚本选择:优先使用专门设计的测试脚本而非通用方案
- 结果验证:对异常性能数据应进行多维度交叉验证
技术启示
这一案例揭示了在大模型部署中几个关键的技术要点:
- 模型特性理解的重要性:不同模型对输入数据的敏感性差异很大
- 性能测试的严谨性:测试方案需要针对具体模型进行定制
- 指标解读的全面性:单一指标可能具有误导性,需要结合多个指标综合分析
通过这次问题排查,不仅解决了特定场景下的性能异常问题,也为后续的大模型部署工作积累了宝贵经验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492