Trajectory-Transformer 开源项目教程
2024-08-17 03:25:09作者:龚格成
项目介绍
Trajectory-Transformer 是一个基于 PyTorch 的开源项目,旨在通过 Transformer 模型来预测和生成轨迹数据。该项目由 FGiuliari 开发,适用于需要处理和预测移动对象轨迹的应用场景,如自动驾驶、机器人导航和交通流量预测等。
项目快速启动
环境准备
首先,确保你已经安装了 Python 3.7 或更高版本。然后,克隆项目仓库并安装所需的依赖包:
git clone https://github.com/FGiuliari/Trajectory-Transformer.git
cd Trajectory-Transformer
pip install -r requirements.txt
数据准备
项目提供了一些示例数据,你可以直接使用这些数据进行快速启动。数据位于 data 目录下。
训练模型
使用提供的脚本进行模型训练:
python train.py --data_dir data --model_dir models
预测轨迹
训练完成后,可以使用以下脚本进行轨迹预测:
python predict.py --model_dir models --input_file data/test_data.csv --output_file predictions.csv
应用案例和最佳实践
自动驾驶
在自动驾驶领域,Trajectory-Transformer 可以用于预测其他车辆和行人的未来轨迹,从而帮助自动驾驶系统做出更安全的决策。
机器人导航
在机器人导航中,该模型可以帮助机器人预测周围物体的移动轨迹,从而避免碰撞并规划最优路径。
交通流量预测
在交通管理系统中,Trajectory-Transformer 可以用于预测交通流量的变化,帮助城市规划者优化交通信号灯的控制策略。
典型生态项目
PyTorch
PyTorch 是一个广泛使用的深度学习框架,Trajectory-Transformer 正是基于 PyTorch 构建的,提供了灵活且高效的模型训练和推理能力。
NumPy
NumPy 是一个强大的科学计算库,Trajectory-Transformer 在数据处理和预处理阶段大量使用了 NumPy 的功能。
Pandas
Pandas 是一个数据分析库,Trajectory-Transformer 使用 Pandas 进行数据的加载、清洗和格式化。
通过结合这些生态项目,Trajectory-Transformer 能够提供一个完整且高效的轨迹预测解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30