EvalAI项目挑战配置最佳实践指南
2025-07-07 04:49:24作者:冯爽妲Honey
在机器学习竞赛平台EvalAI的使用过程中,合理的挑战配置是确保竞赛顺利运行的关键。本文将通过三个典型场景,详细介绍如何编写高效、规范的挑战配置文件(config.yaml),帮助竞赛组织者快速上手。
基础单阶段挑战配置
最简单的配置场景包含单一挑战、单一阶段和单一排行榜。这种配置适合小型竞赛或初期测试阶段。
# 基础单阶段挑战配置示例
challenge:
title: "图像分类挑战" # 挑战名称
description: "基于CIFAR-10数据集的图像分类任务" # 挑战描述
start_date: "2025-07-01T00:00:00Z" # 开始时间
end_date: "2025-08-01T23:59:59Z" # 结束时间
phases:
- name: "训练阶段" # 阶段名称
description: "模型训练和验证阶段"
start_date: "2025-07-01T00:00:00Z"
end_date: "2025-07-20T23:59:59Z"
max_submissions_per_day: 5 # 每日最大提交次数
is_public: true # 是否公开可见
leaderboard:
schema: # 排行榜评分标准
- name: "准确率"
description: "分类准确率"
default: true # 默认显示指标
sorting_zone: "desc" # 降序排列
关键点说明:
- 时间格式必须符合ISO 8601标准
- 每个阶段(phase)可以独立设置提交限制
- 排行榜指标需要明确定义排序方式
多阶段共享排行榜配置
当竞赛需要分阶段进行(如开发阶段和最终测试阶段),但使用同一套评分标准时,可采用此配置。
challenge:
title: "自然语言处理挑战"
description: "文本情感分析任务"
phases:
- name: "开发阶段"
description: "使用公开测试数据"
start_date: "2025-07-01T00:00:00Z"
end_date: "2025-07-15T23:59:59Z"
max_submissions: 100 # 总提交次数限制
- name: "最终测试阶段"
description: "使用私有测试数据"
start_date: "2025-07-16T00:00:00Z"
end_date: "2025-07-31T23:59:59Z"
max_submissions: 3 # 严格限制最终提交次数
phase_splits:
- name: "开发集"
phases: ["开发阶段"] # 关联到开发阶段
- name: "测试集"
phases: ["最终测试阶段"] # 关联到测试阶段
leaderboard:
schema:
- name: "F1分数"
description: "宏观F1分数"
注意事项:
- 不同阶段可以设置不同的提交策略
- phase_splits用于定义评估数据集划分
- 所有阶段共享同一个排行榜定义
多阶段多排行榜高级配置
复杂竞赛可能需要不同阶段使用不同的评估标准和排行榜,例如:
challenge:
title: "多模态AI挑战"
description: "结合图像和文本的多模态分类"
phases:
- name: "开发阶段"
start_date: "2025-09-01T00:00:00Z"
end_date: "2025-09-15T23:59:59Z"
- name: "公开测试阶段"
start_date: "2025-09-16T00:00:00Z"
end_date: "2025-09-25T23:59:59Z"
- name: "私有测试阶段"
start_date: "2025-09-26T00:00:00Z"
end_date: "2025-09-30T23:59:59Z"
leaderboards:
- id: "lb_accuracy" # 准确率排行榜
schema:
- name: "准确率"
sorting_zone: "desc"
phases: ["开发阶段"] # 仅用于开发阶段
- id: "lb_composite" # 综合评分排行榜
schema:
- name: "综合分数"
sorting_zone: "desc"
- name: "推理速度"
sorting_zone: "asc" # 速度越快越好
phases: ["公开测试阶段", "私有测试阶段"] # 用于后两个阶段
高级功能说明:
- 可以定义多个独立的排行榜(leaderboards)
- 每个排行榜可以关联到特定阶段
- 综合评分可以包含多个指标,各自定义排序方向
配置验证与测试建议
在实际部署前,建议组织者:
- 使用EvalAI本地测试环境验证配置文件
- 检查所有时间戳的时区设置
- 验证阶段与排行榜的关联关系是否正确
- 测试提交限制规则是否按预期工作
- 确保评分指标的计算逻辑与描述一致
通过以上配置示例和最佳实践,竞赛组织者可以快速构建出符合需求的挑战结构,为参赛者提供良好的竞赛体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249