EvalAI项目挑战配置最佳实践指南
2025-07-07 22:34:49作者:冯爽妲Honey
在机器学习竞赛平台EvalAI的使用过程中,合理的挑战配置是确保竞赛顺利运行的关键。本文将通过三个典型场景,详细介绍如何编写高效、规范的挑战配置文件(config.yaml),帮助竞赛组织者快速上手。
基础单阶段挑战配置
最简单的配置场景包含单一挑战、单一阶段和单一排行榜。这种配置适合小型竞赛或初期测试阶段。
# 基础单阶段挑战配置示例
challenge:
title: "图像分类挑战" # 挑战名称
description: "基于CIFAR-10数据集的图像分类任务" # 挑战描述
start_date: "2025-07-01T00:00:00Z" # 开始时间
end_date: "2025-08-01T23:59:59Z" # 结束时间
phases:
- name: "训练阶段" # 阶段名称
description: "模型训练和验证阶段"
start_date: "2025-07-01T00:00:00Z"
end_date: "2025-07-20T23:59:59Z"
max_submissions_per_day: 5 # 每日最大提交次数
is_public: true # 是否公开可见
leaderboard:
schema: # 排行榜评分标准
- name: "准确率"
description: "分类准确率"
default: true # 默认显示指标
sorting_zone: "desc" # 降序排列
关键点说明:
- 时间格式必须符合ISO 8601标准
- 每个阶段(phase)可以独立设置提交限制
- 排行榜指标需要明确定义排序方式
多阶段共享排行榜配置
当竞赛需要分阶段进行(如开发阶段和最终测试阶段),但使用同一套评分标准时,可采用此配置。
challenge:
title: "自然语言处理挑战"
description: "文本情感分析任务"
phases:
- name: "开发阶段"
description: "使用公开测试数据"
start_date: "2025-07-01T00:00:00Z"
end_date: "2025-07-15T23:59:59Z"
max_submissions: 100 # 总提交次数限制
- name: "最终测试阶段"
description: "使用私有测试数据"
start_date: "2025-07-16T00:00:00Z"
end_date: "2025-07-31T23:59:59Z"
max_submissions: 3 # 严格限制最终提交次数
phase_splits:
- name: "开发集"
phases: ["开发阶段"] # 关联到开发阶段
- name: "测试集"
phases: ["最终测试阶段"] # 关联到测试阶段
leaderboard:
schema:
- name: "F1分数"
description: "宏观F1分数"
注意事项:
- 不同阶段可以设置不同的提交策略
- phase_splits用于定义评估数据集划分
- 所有阶段共享同一个排行榜定义
多阶段多排行榜高级配置
复杂竞赛可能需要不同阶段使用不同的评估标准和排行榜,例如:
challenge:
title: "多模态AI挑战"
description: "结合图像和文本的多模态分类"
phases:
- name: "开发阶段"
start_date: "2025-09-01T00:00:00Z"
end_date: "2025-09-15T23:59:59Z"
- name: "公开测试阶段"
start_date: "2025-09-16T00:00:00Z"
end_date: "2025-09-25T23:59:59Z"
- name: "私有测试阶段"
start_date: "2025-09-26T00:00:00Z"
end_date: "2025-09-30T23:59:59Z"
leaderboards:
- id: "lb_accuracy" # 准确率排行榜
schema:
- name: "准确率"
sorting_zone: "desc"
phases: ["开发阶段"] # 仅用于开发阶段
- id: "lb_composite" # 综合评分排行榜
schema:
- name: "综合分数"
sorting_zone: "desc"
- name: "推理速度"
sorting_zone: "asc" # 速度越快越好
phases: ["公开测试阶段", "私有测试阶段"] # 用于后两个阶段
高级功能说明:
- 可以定义多个独立的排行榜(leaderboards)
- 每个排行榜可以关联到特定阶段
- 综合评分可以包含多个指标,各自定义排序方向
配置验证与测试建议
在实际部署前,建议组织者:
- 使用EvalAI本地测试环境验证配置文件
- 检查所有时间戳的时区设置
- 验证阶段与排行榜的关联关系是否正确
- 测试提交限制规则是否按预期工作
- 确保评分指标的计算逻辑与描述一致
通过以上配置示例和最佳实践,竞赛组织者可以快速构建出符合需求的挑战结构,为参赛者提供良好的竞赛体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1