Zencoder API PHP 库使用指南
2024-12-20 03:39:41作者:温玫谨Lighthearted
1. 安装指南
首先,您需要从 GitHub 下载 Zencoder API PHP 库。您可以通过访问 Zencoder API PHP 库 GitHub 仓库 来获取库的副本。
下载后,将库文件 Zencoder.php
放置在您的服务器上,确保您的脚本可以访问该文件。
git clone https://github.com/zencoder/zencoder-php.git
2. 项目使用说明
要开始使用 Zencoder API PHP 库,您需要创建 Services_Zencoder
类的新实例,并传递您的 API 密钥作为第一个参数。
$zencoder = new Services_Zencoder('您的API密钥');
一旦创建了对象,您就可以使用它来与 API 进行交互。以下是一些可以调用的函数的快速概览:
$zencoder->accounts->create($array);
$zencoder->jobs->create($array);
$zencoder->jobs->progress($job_id);
$zencoder->inputs->details($input_id);
$zencoder->outputs->details($output_id);
$zencer->notifications->parseIncoming();
任何错误都将抛出 Services_Zencoder_Exception
。您可以在异常上调用 getErrors()
方法,它将返回从 Zencoder API 接收到的任何错误。
3. 项目API使用文档
Zencoder API PHP 库使用 cURL 来发送 JSON 格式的参数到 Zencoder 的编码 API。
创建编码任务
第一步
访问您的 Zencoder 账户中的 API 构建器,并执行一个成功的编码任务。
第二步
复制成功的 JSON 字符串(以第一个花括号 {
开头),并将其作为新 ZencoderJob
对象的参数。在您的服务器上执行此脚本来测试它是否正常工作。
try {
$zencoder = new Services_Zencoder('您的API密钥');
$encoding_job = $zencoder->jobs->create(
array(
"input" => "s3://bucket-name/file-name.avi",
"outputs" => array(
array(
"label" => "web"
)
)
)
);
echo "成功!\n";
echo "任务 ID: " . $encoding_job->id . "\n";
echo "输出 ID: " . $encoding_job->outputs['web']->id . "\n";
} catch (Services_Zencoder_Exception $e) {
echo "失败 :(\n";
foreach ($e->getErrors() as $error) {
echo $error . "\n";
}
}
第三步
修改上述脚本来满足您的需求。
通知处理
ZencoderOutputNotification
类用于捕获和解析当输出文件完成时从 Zencoder 发送到您的应用程序的 JSON 数据。
第一步
创建一个用于接收通知的脚本,并将其上传到服务器上的一个公共可访问位置。
try {
$zencoder = new Services_Zencoder('您的API密钥');
$notification = $zencoder->notifications->parseIncoming();
// 根据通知状态进行处理
} catch (Services_Zencoder_Exception $e) {
echo "失败 :(\n";
foreach ($e->getErrors() as $error) {
echo $error . "\n";
}
}
第二步
在编码任务的参数中,为每个您想要接收到通知的输出添加脚本的 URL。
$encoding_job = $zencoder->jobs->create(
array(
"outputs" => array(
array(
"label" => "web",
"notifications" => array("http://example.com/encoding/notification.php")
)
)
)
);
第三步
修改上述脚本来满足您的需求。
4. 项目安装方式
请参考上述的安装指南来安装 Zencoder API PHP 库。确保您已经将库文件放置在服务器上,并且您的脚本可以访问到它。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60