Zencoder API PHP 库使用指南
2024-12-20 20:13:00作者:温玫谨Lighthearted
1. 安装指南
首先,您需要从 GitHub 下载 Zencoder API PHP 库。您可以通过访问 Zencoder API PHP 库 GitHub 仓库 来获取库的副本。
下载后,将库文件 Zencoder.php 放置在您的服务器上,确保您的脚本可以访问该文件。
git clone https://github.com/zencoder/zencoder-php.git
2. 项目使用说明
要开始使用 Zencoder API PHP 库,您需要创建 Services_Zencoder 类的新实例,并传递您的 API 密钥作为第一个参数。
$zencoder = new Services_Zencoder('您的API密钥');
一旦创建了对象,您就可以使用它来与 API 进行交互。以下是一些可以调用的函数的快速概览:
$zencoder->accounts->create($array);
$zencoder->jobs->create($array);
$zencoder->jobs->progress($job_id);
$zencoder->inputs->details($input_id);
$zencoder->outputs->details($output_id);
$zencer->notifications->parseIncoming();
任何错误都将抛出 Services_Zencoder_Exception。您可以在异常上调用 getErrors() 方法,它将返回从 Zencoder API 接收到的任何错误。
3. 项目API使用文档
Zencoder API PHP 库使用 cURL 来发送 JSON 格式的参数到 Zencoder 的编码 API。
创建编码任务
第一步
访问您的 Zencoder 账户中的 API 构建器,并执行一个成功的编码任务。
第二步
复制成功的 JSON 字符串(以第一个花括号 { 开头),并将其作为新 ZencoderJob 对象的参数。在您的服务器上执行此脚本来测试它是否正常工作。
try {
$zencoder = new Services_Zencoder('您的API密钥');
$encoding_job = $zencoder->jobs->create(
array(
"input" => "s3://bucket-name/file-name.avi",
"outputs" => array(
array(
"label" => "web"
)
)
)
);
echo "成功!\n";
echo "任务 ID: " . $encoding_job->id . "\n";
echo "输出 ID: " . $encoding_job->outputs['web']->id . "\n";
} catch (Services_Zencoder_Exception $e) {
echo "失败 :(\n";
foreach ($e->getErrors() as $error) {
echo $error . "\n";
}
}
第三步
修改上述脚本来满足您的需求。
通知处理
ZencoderOutputNotification 类用于捕获和解析当输出文件完成时从 Zencoder 发送到您的应用程序的 JSON 数据。
第一步
创建一个用于接收通知的脚本,并将其上传到服务器上的一个公共可访问位置。
try {
$zencoder = new Services_Zencoder('您的API密钥');
$notification = $zencoder->notifications->parseIncoming();
// 根据通知状态进行处理
} catch (Services_Zencoder_Exception $e) {
echo "失败 :(\n";
foreach ($e->getErrors() as $error) {
echo $error . "\n";
}
}
第二步
在编码任务的参数中,为每个您想要接收到通知的输出添加脚本的 URL。
$encoding_job = $zencoder->jobs->create(
array(
"outputs" => array(
array(
"label" => "web",
"notifications" => array("http://example.com/encoding/notification.php")
)
)
)
);
第三步
修改上述脚本来满足您的需求。
4. 项目安装方式
请参考上述的安装指南来安装 Zencoder API PHP 库。确保您已经将库文件放置在服务器上,并且您的脚本可以访问到它。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210