RStudio Conf 2022 ggplot2 图形设计:极坐标太空任务可视化解析
2025-06-02 02:22:34作者:卓炯娓
项目背景
本文基于 RStudio Conf 2022 中关于 ggplot2 图形设计的研讨会材料,重点解析如何创建极坐标太空任务可视化图表。该图表展示了太空探索人员在太空中的累计停留时间,以及他们首次和最后一次执行太空任务的年份。
数据准备
首先需要准备太空任务数据,包括:
library(tidyverse)
# 读取太空探索数据
df_astro <- read_csv('space_explorers.csv')
# 数据处理
df_missions <- df_astro %>%
group_by(name) %>%
summarize(
hours = sum(hours_mission),
year = min(year_of_mission),
max_year = max(year_of_mission)
) %>%
ungroup() %>%
mutate(year = -year) %>%
arrange(year) %>%
mutate(id = row_number())
数据处理步骤包括:
- 按探索人员姓名分组
- 计算每位探索人员的总太空停留时间
- 记录首次和最后一次任务年份
- 对年份取负值以便后续可视化
- 为每位探索人员分配唯一ID
基础可视化构建
核心图层设计
g1 <- ggplot(df_missions, aes(x = id, y = hours, color = hours)) +
geom_linerange(aes(ymin = 0, ymax = hours, alpha = hours), size = .25) +
geom_point(aes(y = 0), shape = 15, size = .1, color = "#808080") +
geom_point(aes(y = hours, size = hours))
关键几何对象:
geom_linerange()- 创建从基线到数据点的垂直线段geom_point()- 在基线位置添加灰色方块标记geom_point()- 在数据点位置添加彩色气泡
极坐标转换
g1 <- g1 + coord_polar(theta = "y", start = 0, clip = "off")
使用coord_polar()将直角坐标系转换为极坐标系,参数theta = "y"表示使用y轴作为角度轴。
比例尺调整
g1 <- g1 +
scale_x_continuous(limits = c(-300, NA), expand = c(0, 0)) +
scale_y_continuous(limits = c(0, 23000), expand = c(0, 0)) +
scale_color_distiller(palette = "YlGnBu", direction = -1) +
scale_size(range = c(.001, 3)) +
scale_alpha(range = c(.33, .95))
比例尺设置包括:
- x轴和y轴的范围和扩展
- 颜色渐变使用YlGnBu调色板
- 气泡大小范围
- 透明度范围
主题与标签优化
主题设置
g1 <- g1 +
theme_void() +
theme(
plot.background = element_rect(fill = "black"),
plot.margin = margin(-70, -70, -70, -70),
legend.position = "none"
)
使用theme_void()移除所有默认主题元素,并设置黑色背景和负边距以最大化绘图区域。
添加标签
# 准备标签数据
df_labs <- df_missions %>%
filter(year %in% -c(1961, 197:201*10, 2019)) %>%
group_by(year) %>%
filter(id == min(id))
df_max <- df_missions %>%
arrange(-hours) %>%
slice(1) %>%
mutate(
first_name = str_remove(name, ".*, "),
last_name = str_remove(name, "(?<=),.*"),
label = paste("Between", abs(year), "and", max_year, ",\n",
first_name, last_name, "has spent\n",
format(hours, big.mark = ','), "hours in space.\nThat's roughly",
round(hours / 24, 0), "days!")
)
# 添加标签
g2 <- g1 +
geom_text(
data = df_labs, aes(y = 0, label = abs(year)),
family = "Lato", fontface = "bold", color = "#808080",
size = 4.5, hjust = 1.2
) +
geom_text(
data = df_max, aes(label = label)),
family = "Lato", size = 3.9, vjust = -.35
)
标题和说明文字
g2 <- g2 +
annotate(
geom = "text", x = -300, y = 0, label = "Travelling to\nOuter Space",
family = "Boska", fontface = "bold", lineheight = .9,
size = 20, color = "white", hjust = .57, vjust = .45, alpha = .25
) +
annotate(
geom = "text", x = -300, y = 0, label = "Travelling to\nOuter Space",
family = "Boska", fontface = "bold", lineheight = .85,
size = 20, color = "white", hjust = .55, vjust = .4
) +
labs(caption = "Cumulative time in outer space...") +
theme(
plot.caption = element_text(
family = "Lato",
size = 15, color = "#808080", hjust = .5,
margin = margin(-100, 0, 100, 0)
)
)
高级扩展技巧
使用扩展包增强视觉效果:
# 使用ggforce和ggblur扩展包
g_ext <- ggplot(df_missions, aes(x = id, y = hours, color = hours)) +
ggforce::geom_link(aes(xend = id, yend = 0, alpha = hours), size = .25, n = 300) +
ggblur::geom_point_blur(aes(size = hours, blur_size = hours), blur_steps = 25) +
scico::scale_color_scico(palette = "buda") +
ggblur::scale_blur_size_continuous(range = c(.5, 10), guide = "none")
扩展功能包括:
ggforce::geom_link()- 创建平滑曲线而非直线段ggblur::geom_point_blur()- 添加模糊效果的点scico::scale_color_scico()- 使用科学配色方案
设计要点总结
- 极坐标转换:将传统条形图转换为极坐标形式,增强视觉冲击力
- 层次设计:通过线条、基点和数据点的组合构建完整图表
- 视觉编码:使用颜色、大小和透明度三重编码表示数据值
- 标签优化:精心设计标签位置和样式确保可读性
- 主题定制:完全自定义主题元素,创造独特的视觉风格
- 扩展应用:利用扩展包实现更丰富的视觉效果
这种可视化方法不仅适用于太空任务数据,也可应用于其他时间序列和累积数据的展示,如项目进度、运动数据等。关键在于理解ggplot2的分层语法和极坐标转换原理,再结合创意设计思维。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869