Matrix-js-sdk 中 IndexedDBStore 初始化问题的分析与解决
在升级 matrix-js-sdk 从 29.1.0 到 30.3.0 版本时,开发者可能会遇到一个关于 IndexedDBStore 初始化的错误:"createUser is undefined, it should be set with setUserCreator()!"。这个问题涉及到 SDK 存储层的初始化流程变更,需要开发者调整初始化顺序或采用新的 API 使用方式。
问题背景
Matrix-js-sdk 是一个用于构建 Matrix 协议客户端的 JavaScript SDK。IndexedDBStore 是该 SDK 提供的基于 IndexedDB 的持久化存储实现,用于保存会话数据、用户信息等内容。在 30.3.0 版本中,存储层的初始化流程发生了变化,导致原有代码可能无法正常工作。
错误原因分析
当开发者按照旧版本文档中的示例代码初始化 IndexedDBStore 时:
let opts = { indexedDB: window.indexedDB, localStorage: window.localStorage };
let store = new IndexedDBStore(opts);
await store.startup();
系统会抛出错误,提示 createUser 方法未定义。这是因为在新版本中,IndexedDBStore 需要在初始化时明确知道如何创建用户对象,而旧版本中这一步骤是隐式完成的。
解决方案
临时解决方案(不推荐)
可以使用一个未公开且已废弃的方法临时解决问题:
indexedDBStore.setUserCreator(uid => new sdk.User(uid));
await indexedDBStore.startup();
虽然这种方法可以暂时解决问题,但由于它使用了未公开的 API,存在未来版本不兼容的风险,不建议在生产环境中长期使用。
推荐解决方案
正确的做法是调整初始化顺序,先创建客户端实例,再将其与存储关联:
const indexedDBStore = new sdk.IndexedDBStore({
indexedDB: global.indexedDB,
localStorage: global.localStorage,
dbName: 'web-sync-store',
});
this.matrixClient = sdk.createClient({
baseUrl: secret.baseUrl,
accessToken: secret.accessToken,
userId: secret.userId,
store: indexedDBStore,
// 其他配置...
});
await indexedDBStore.startup();
这种方式的优点在于:
- 完全使用公开且稳定的 API
- 符合 SDK 的设计意图
- 未来版本兼容性更好
技术原理
在 matrix-js-sdk 的内部实现中,IndexedDBStore 需要能够创建用户对象来处理存储中的用户数据。新版本中,这一功能被明确分离出来,要求开发者通过正确的初始化顺序来确保依赖关系正确建立。
当先创建客户端实例再启动存储时,存储层能够从客户端获取必要的用户创建功能,避免了直接依赖未公开的 API。这种设计更符合模块化原则,也使得依赖关系更加清晰。
总结
Matrix-js-sdk 30.3.0 版本对存储初始化流程进行了调整,开发者需要相应更新初始化代码。最佳实践是先创建客户端实例,再启动存储,而不是直接调用 setUserCreator 这样的未公开 API。这种变更反映了 SDK 向更清晰架构的演进,虽然短期内可能导致兼容性问题,但从长远看有利于项目的可维护性和稳定性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0117
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00