Matrix-js-sdk 中 IndexedDBStore 初始化问题的分析与解决
在升级 matrix-js-sdk 从 29.1.0 到 30.3.0 版本时,开发者可能会遇到一个关于 IndexedDBStore 初始化的错误:"createUser is undefined, it should be set with setUserCreator()!"。这个问题涉及到 SDK 存储层的初始化流程变更,需要开发者调整初始化顺序或采用新的 API 使用方式。
问题背景
Matrix-js-sdk 是一个用于构建 Matrix 协议客户端的 JavaScript SDK。IndexedDBStore 是该 SDK 提供的基于 IndexedDB 的持久化存储实现,用于保存会话数据、用户信息等内容。在 30.3.0 版本中,存储层的初始化流程发生了变化,导致原有代码可能无法正常工作。
错误原因分析
当开发者按照旧版本文档中的示例代码初始化 IndexedDBStore 时:
let opts = { indexedDB: window.indexedDB, localStorage: window.localStorage };
let store = new IndexedDBStore(opts);
await store.startup();
系统会抛出错误,提示 createUser 方法未定义。这是因为在新版本中,IndexedDBStore 需要在初始化时明确知道如何创建用户对象,而旧版本中这一步骤是隐式完成的。
解决方案
临时解决方案(不推荐)
可以使用一个未公开且已废弃的方法临时解决问题:
indexedDBStore.setUserCreator(uid => new sdk.User(uid));
await indexedDBStore.startup();
虽然这种方法可以暂时解决问题,但由于它使用了未公开的 API,存在未来版本不兼容的风险,不建议在生产环境中长期使用。
推荐解决方案
正确的做法是调整初始化顺序,先创建客户端实例,再将其与存储关联:
const indexedDBStore = new sdk.IndexedDBStore({
indexedDB: global.indexedDB,
localStorage: global.localStorage,
dbName: 'web-sync-store',
});
this.matrixClient = sdk.createClient({
baseUrl: secret.baseUrl,
accessToken: secret.accessToken,
userId: secret.userId,
store: indexedDBStore,
// 其他配置...
});
await indexedDBStore.startup();
这种方式的优点在于:
- 完全使用公开且稳定的 API
- 符合 SDK 的设计意图
- 未来版本兼容性更好
技术原理
在 matrix-js-sdk 的内部实现中,IndexedDBStore 需要能够创建用户对象来处理存储中的用户数据。新版本中,这一功能被明确分离出来,要求开发者通过正确的初始化顺序来确保依赖关系正确建立。
当先创建客户端实例再启动存储时,存储层能够从客户端获取必要的用户创建功能,避免了直接依赖未公开的 API。这种设计更符合模块化原则,也使得依赖关系更加清晰。
总结
Matrix-js-sdk 30.3.0 版本对存储初始化流程进行了调整,开发者需要相应更新初始化代码。最佳实践是先创建客户端实例,再启动存储,而不是直接调用 setUserCreator 这样的未公开 API。这种变更反映了 SDK 向更清晰架构的演进,虽然短期内可能导致兼容性问题,但从长远看有利于项目的可维护性和稳定性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01