Splitgraph与ClickHouse集成实战:通过ODBC实现跨平台数据分析
2025-07-01 02:40:47作者:范垣楠Rhoda
概述
本文将深入探讨如何将Splitgraph数据平台与ClickHouse分析型数据库进行集成,通过ODBC标准接口实现高效的数据查询与分析。Splitgraph作为一个强大的数据虚拟化平台,能够整合多种数据源;而ClickHouse作为列式存储数据库,在分析查询方面具有显著优势。两者的结合为数据分析工作流提供了新的可能性。
技术背景
Splitgraph简介
Splitgraph是一个开源的数据虚拟化平台,它允许用户通过统一的PostgreSQL接口访问和管理分布在多个位置的数据集。主要特点包括:
- 支持多种数据源(PostgreSQL、Socrata等)
- 提供数据版本控制功能
- 实现数据的"分层查询"(Layered Querying)
- 内置数据交付网络(DDN)
ClickHouse简介
ClickHouse是Yandex开发的高性能列式数据库管理系统,特别适合在线分析处理(OLAP)场景:
- 卓越的查询性能
- 高效的压缩存储
- 支持实时数据插入
- 丰富的分析函数
ODBC的作用
ODBC(Open Database Connectivity)是一种标准的数据库访问接口,它:
- 提供统一的API访问不同数据库
- 支持跨平台操作
- 允许应用程序与数据库解耦
环境准备
系统要求
- Docker环境
- Docker Compose工具
- 基本的命令行操作能力
架构组成
本方案使用Docker Compose部署以下组件:
- Splitgraph引擎:本地数据管理核心
- ClickHouse服务器:分析查询引擎
- ClickHouse客户端:交互式查询界面
- unixODBC驱动:数据库连接桥梁
基础配置
ODBC连接设置
配置文件odbc.ini包含两个关键数据源定义:
-
splitgraph_ddn:连接Splitgraph云服务
- 需要API密钥认证
- 适合快速查询云端数据
-
splitgraph:连接本地Splitgraph引擎
- 无查询行数限制
- 支持分层查询等高级功能
服务启动
通过以下命令启动整个技术栈:
docker-compose up -d --build
实战操作
场景一:直接查询Splitgraph DDN
基本查询示例
通过ClickHouse的odbc()表函数可以直接查询云端数据:
SELECT
engine,
address
FROM odbc('DSN=splitgraph_ddn',
'cityofchicago/fire-stations-28km-gtjn',
'fire_stations')
LIMIT 10;
查询优化技巧
由于DDN有10,000行结果限制,建议:
- 添加精确的WHERE条件
- 分页获取大数据集
- 使用更具体的查询字段
类型处理实践
当遇到数据类型不兼容时,可以使用ClickHouse的类型转换函数:
SELECT
parseDateTimeBestEffortOrNull(date_str) AS parsed_date,
value
FROM odbc(...);
场景二:跨数据集联合分析
建立ODBC映射表
CREATE TABLE chicago_cases (
lab_report_date String,
cases_total Int32
) ENGINE = ODBC(...);
CREATE TABLE cambridge_cases (
date String,
new_positive_cases Int32
) ENGINE = ODBC(...);
执行跨源关联查询
SELECT
parseDateTimeBestEffortOrNull(cambridge_cases.date) AS date,
chicago_cases.cases_total AS chicago_daily_cases,
cambridge_cases.new_positive_cases AS cambridge_daily_cases
FROM chicago_cases
FULL OUTER JOIN cambridge_cases ON ...;
场景三:本地Splitgraph引擎应用
分层查询实践
SELECT
candidate_normalized,
SUM(votes) AS votes
FROM odbc('DSN=splitgraph',
'splitgraph/2016_election',
'precinct_results')
WHERE state_postal = 'TX'
GROUP BY candidate_normalized;
此查询只会下载德州相关的数据片段,显著减少数据传输量。
数据导入ClickHouse优化
对于频繁查询的大数据集,可先导入ClickHouse:
-- 创建目标表
CREATE TABLE ch_2016_election
ENGINE = MergeTree
ORDER BY county_fips
AS SELECT * FROM odbc(...);
性能优化建议
- 查询下推:尽量将过滤条件放在WHERE子句中
- 数据本地化:对热点数据建立ClickHouse本地表
- 类型预处理:在ODBC映射表中预先转换复杂类型
- 分批处理:对大结果集使用LIMIT和OFFSET分页
典型应用场景
- 跨机构数据联合分析:整合不同公共机构开放数据
- 实时分析流水线:Splitgraph作为数据枢纽,ClickHouse提供实时分析
- 历史数据分析:利用Splitgraph的版本控制功能追踪数据变化
- 数据科学工作流:将预处理后的数据直接导入分析环境
总结
通过本文介绍的技术方案,我们实现了:
- Splitgraph与ClickHouse的无缝集成
- 云端数据与本地分析的灵活组合
- 复杂数据类型的正确处理
- 大规模数据集的高效查询
这种架构特别适合需要整合多源数据并进行分析的场景,在保证数据新鲜度的同时提供卓越的查询性能。读者可以根据实际需求选择直接查询DDN或建立本地数据仓库的方案。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19