Splitgraph与ClickHouse集成实战:通过ODBC实现跨平台数据分析
2025-07-01 01:05:14作者:范垣楠Rhoda
概述
本文将深入探讨如何将Splitgraph数据平台与ClickHouse分析型数据库进行集成,通过ODBC标准接口实现高效的数据查询与分析。Splitgraph作为一个强大的数据虚拟化平台,能够整合多种数据源;而ClickHouse作为列式存储数据库,在分析查询方面具有显著优势。两者的结合为数据分析工作流提供了新的可能性。
技术背景
Splitgraph简介
Splitgraph是一个开源的数据虚拟化平台,它允许用户通过统一的PostgreSQL接口访问和管理分布在多个位置的数据集。主要特点包括:
- 支持多种数据源(PostgreSQL、Socrata等)
- 提供数据版本控制功能
- 实现数据的"分层查询"(Layered Querying)
- 内置数据交付网络(DDN)
ClickHouse简介
ClickHouse是Yandex开发的高性能列式数据库管理系统,特别适合在线分析处理(OLAP)场景:
- 卓越的查询性能
- 高效的压缩存储
- 支持实时数据插入
- 丰富的分析函数
ODBC的作用
ODBC(Open Database Connectivity)是一种标准的数据库访问接口,它:
- 提供统一的API访问不同数据库
- 支持跨平台操作
- 允许应用程序与数据库解耦
环境准备
系统要求
- Docker环境
- Docker Compose工具
- 基本的命令行操作能力
架构组成
本方案使用Docker Compose部署以下组件:
- Splitgraph引擎:本地数据管理核心
- ClickHouse服务器:分析查询引擎
- ClickHouse客户端:交互式查询界面
- unixODBC驱动:数据库连接桥梁
基础配置
ODBC连接设置
配置文件odbc.ini
包含两个关键数据源定义:
-
splitgraph_ddn:连接Splitgraph云服务
- 需要API密钥认证
- 适合快速查询云端数据
-
splitgraph:连接本地Splitgraph引擎
- 无查询行数限制
- 支持分层查询等高级功能
服务启动
通过以下命令启动整个技术栈:
docker-compose up -d --build
实战操作
场景一:直接查询Splitgraph DDN
基本查询示例
通过ClickHouse的odbc()
表函数可以直接查询云端数据:
SELECT
engine,
address
FROM odbc('DSN=splitgraph_ddn',
'cityofchicago/fire-stations-28km-gtjn',
'fire_stations')
LIMIT 10;
查询优化技巧
由于DDN有10,000行结果限制,建议:
- 添加精确的WHERE条件
- 分页获取大数据集
- 使用更具体的查询字段
类型处理实践
当遇到数据类型不兼容时,可以使用ClickHouse的类型转换函数:
SELECT
parseDateTimeBestEffortOrNull(date_str) AS parsed_date,
value
FROM odbc(...);
场景二:跨数据集联合分析
建立ODBC映射表
CREATE TABLE chicago_cases (
lab_report_date String,
cases_total Int32
) ENGINE = ODBC(...);
CREATE TABLE cambridge_cases (
date String,
new_positive_cases Int32
) ENGINE = ODBC(...);
执行跨源关联查询
SELECT
parseDateTimeBestEffortOrNull(cambridge_cases.date) AS date,
chicago_cases.cases_total AS chicago_daily_cases,
cambridge_cases.new_positive_cases AS cambridge_daily_cases
FROM chicago_cases
FULL OUTER JOIN cambridge_cases ON ...;
场景三:本地Splitgraph引擎应用
分层查询实践
SELECT
candidate_normalized,
SUM(votes) AS votes
FROM odbc('DSN=splitgraph',
'splitgraph/2016_election',
'precinct_results')
WHERE state_postal = 'TX'
GROUP BY candidate_normalized;
此查询只会下载德州相关的数据片段,显著减少数据传输量。
数据导入ClickHouse优化
对于频繁查询的大数据集,可先导入ClickHouse:
-- 创建目标表
CREATE TABLE ch_2016_election
ENGINE = MergeTree
ORDER BY county_fips
AS SELECT * FROM odbc(...);
性能优化建议
- 查询下推:尽量将过滤条件放在WHERE子句中
- 数据本地化:对热点数据建立ClickHouse本地表
- 类型预处理:在ODBC映射表中预先转换复杂类型
- 分批处理:对大结果集使用LIMIT和OFFSET分页
典型应用场景
- 跨机构数据联合分析:整合不同公共机构开放数据
- 实时分析流水线:Splitgraph作为数据枢纽,ClickHouse提供实时分析
- 历史数据分析:利用Splitgraph的版本控制功能追踪数据变化
- 数据科学工作流:将预处理后的数据直接导入分析环境
总结
通过本文介绍的技术方案,我们实现了:
- Splitgraph与ClickHouse的无缝集成
- 云端数据与本地分析的灵活组合
- 复杂数据类型的正确处理
- 大规模数据集的高效查询
这种架构特别适合需要整合多源数据并进行分析的场景,在保证数据新鲜度的同时提供卓越的查询性能。读者可以根据实际需求选择直接查询DDN或建立本地数据仓库的方案。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133