Google Cloud Monitoring v2.25.0 版本发布:新增调试日志与监控条件支持
Google Cloud Monitoring 是 Google Cloud 平台提供的监控服务,它允许开发者收集、分析和可视化应用程序和基础设施的性能数据。最新发布的 v2.25.0 版本带来了一系列重要的功能增强和改进,特别是在调试日志支持和监控条件类型方面有了显著提升。
核心功能更新
1. 新增调试日志支持
新版本引入了调试日志的主动选择机制(opt-in debug logging),这是一个非常有价值的功能。开发者现在可以按需启用详细的调试日志记录,而不会影响生产环境的性能。这种细粒度的日志控制对于排查复杂问题特别有帮助,同时又避免了不必要的日志开销。
2. 增强监控条件类型
v2.25.0 版本增加了两种新的监控条件类型:
-
PrometheusQueryLanguageCondition 现在支持禁用指标验证(disable_metric_validation),这为使用 PromQL 查询时提供了更大的灵活性,特别是在处理自定义或非标准指标时。
-
新增了 SqlCondition 类型,可以直接在 AlertPolicy 中使用 SQL 语法定义告警条件。这一功能扩展了监控策略的表达能力,使熟悉 SQL 的开发者能够更直观地定义复杂的监控规则。
3. 时间序列数据增强
时间序列(TimeSeries)现在支持描述字段(description),但需要注意的是,这个字段仅用于输入目的。这一改进使得开发者能够为监控数据添加更多上下文信息,有助于后续分析和问题诊断。
重要变更与弃用
值得注意的是,新版本中标记了 QueryTimeSeries(MQL 查询端点)为已弃用。这表明 Google 正在调整其监控查询 API 的策略方向,开发者应该开始考虑迁移到替代方案。
文档改进与说明
新版本还包含了对文档的多项澄清和更新:
- 明确了 ServiceLevelObjective.goal 的取值范围必须小于等于 0.9999
- 说明了 TimeSeries.unit 字段在 CreateTimeSeries 操作中的有限更新能力
- 新增了关于 ServiceAgentAuthentication 支持生成 OAuth 令牌的文档
技术细节优化
在底层实现上,v2.25.0 修复了一个与 gRPC 元数据相关的类型问题,特别是当元数据键以 "-bin" 结尾时的处理。这种看似微小的修复实际上提高了系统的稳定性和兼容性。
总结
Google Cloud Monitoring v2.25.0 版本通过新增调试日志支持、扩展监控条件类型以及改进文档说明,进一步提升了监控服务的灵活性和可用性。这些改进使得开发者能够更精确地控制监控行为,更灵活地定义告警策略,同时也为系统运维提供了更好的可观测性工具。对于正在使用或考虑使用 Google Cloud Monitoring 的团队来说,这个版本值得关注和评估升级。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00