Navigation2中实现碰撞检测目标点移除功能的技术解析
2025-06-26 15:05:28作者:曹令琨Iris
背景与需求分析
在机器人导航系统中,路径规划是一个核心功能。Navigation2作为ROS2中的导航框架,提供了完整的导航解决方案。在实际应用中,我们经常会遇到外部系统生成一系列导航目标点的情况,但这些目标点可能位于障碍物区域内,导致路径规划失败或产生不合理的路径。
传统做法中,开发者需要自行实现碰撞检测逻辑来过滤这些目标点。Navigation2团队近期提出了一个创新性的解决方案——通过行为树节点实现目标点的碰撞检测与过滤功能,这将大大简化开发者的工作流程。
技术方案设计
基于GetCost服务的实现
Navigation2最新版本中已经提供了GetCost服务接口,该服务可以查询指定位置在代价地图中的代价值。基于此服务,我们可以实现以下功能:
- 对每个目标点调用GetCost服务
- 根据返回的代价值判断目标点是否位于障碍物区域
- 过滤掉位于障碍物区域的目标点
这种实现方式具有以下优势:
- 无需修改现有costmap或planner_server代码
- 直接利用现有基础设施,系统稳定性高
- 实现简单,维护成本低
性能优化考虑
考虑到可能需要检查多个目标点,可以扩展GetCost服务为批量查询接口,避免多次服务调用的开销。这种优化对于目标点数量较多的情况尤为重要。
实现细节
行为树节点设计
新的行为树节点"RemoveInCollisionGoals"将实现以下逻辑:
- 输入:原始目标点列表
- 处理:对每个点进行碰撞检测
- 输出:过滤后的目标点列表
该节点可以作为路径规划前的预处理步骤,确保传递给规划器的目标点都是可达的。
碰撞检测策略
碰撞检测基于代价地图中的代价值:
- 高于特定阈值:视为障碍物区域
- 低于阈值:视为可通行区域
阈值可根据实际应用场景配置,提供灵活性。
应用场景
这一功能特别适用于以下场景:
- 外部系统生成的导航目标点
- 基于视觉或其他传感器生成的粗略路径点
- 需要确保目标点可达性的高可靠性应用
总结
Navigation2通过新增"RemoveInCollisionGoals"行为树节点,提供了一种优雅的解决方案来处理可能存在碰撞的目标点。这一功能充分利用了现有基础设施,既保持了系统架构的简洁性,又满足了实际应用需求。开发者现在可以更专注于高层逻辑的实现,而无需关心底层的碰撞检测细节,这体现了Navigation2框架设计的人性化和实用性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322