PyTorch 到 JavaScript 转换的最佳实践指南
2025-05-15 07:05:08作者:苗圣禹Peter
1. 项目介绍
本项目是基于开源库 ONNX.js 的一个实践项目,旨在将 PyTorch 模型转换为可以在浏览器中运行的 JavaScript 代码。通过使用 ONNX.js,我们可以在不依赖 Python 或其他服务器端技术的情况下,直接在前端执行深度学习模型。这对于构建轻量级、可交互的 web 应用程序非常有用。
2. 项目快速启动
环境准备
- Python 3.6 或更高版本
- PyTorch
- ONNX
- Node.js
克隆仓库
git clone https://github.com/elliotwaite/pytorch-to-javascript-with-onnx-js.git
cd pytorch-to-javascript-with-onnx-js
安装依赖
pip install torch onnx
npm install
转换模型
首先,确保你的 PyTorch 模型可以正常工作。然后,使用 ONNX 导出模型:
import torch
import torch.nn as nn
# 示例模型
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(20, 50, 5)
self.fc1 = nn.Linear(50 * 4 * 4, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 50 * 4 * 4)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 创建模型实例
model = SimpleModel()
# 模型转换为 ONNX 格式
dummy_input = torch.randn(1, 1, 28, 28)
torch.onnx.export(model, dummy_input, "simple_model.onnx")
编译 ONNX.js 模型
在项目目录中运行以下命令:
node build.js
这将生成 JavaScript 文件,你可以在网页中直接使用。
3. 应用案例和最佳实践
模型加载和预测
在你的 JavaScript 代码中,你可以使用以下方式加载和运行模型:
// 加载模型
const model = await onnx.loadModel('path/to/model.onnx');
// 创建输入张量
const inputTensor = new onnx.Tensor(inputData, 'float32', [1, 1, 28, 28]);
// 运行模型
const outputTensor = await model.predict([inputTensor]);
// 获取输出数据
const outputData = outputTensor.data;
优化模型
在部署模型之前,可以对其进行优化以提高性能。例如,你可以使用 TensorFlow Lite 的转换器来优化模型,减少其大小并提高推理速度。
4. 典型生态项目
- ONNX.js:用于在浏览器中运行 ONNX 模型的 JavaScript 库。
- TensorFlow.js:用于在浏览器和 Node.js 中训练和部署机器学习模型的库。
- WebDNN:一个用于在浏览器中高效执行深度学习模型的框架。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328