PySWMM 开源项目安装与使用指南
2024-10-10 21:37:45作者:廉皓灿Ida
PySWMM 是一个基于Python语言的软件包,专为创建、操作以及研究复杂网络的结构、动力学和功能而设计。本指南旨在帮助您了解并快速上手这个用于管理美国环保署(EPA)Stormwater Management Model (SWMM) 的强大工具。
1. 项目目录结构及介绍
PySWMM 的仓库遵循典型的Python项目布局,主要结构如下:
docs
: 包含项目的文档源文件,如教程、API参考等。pyswmm
: 核心代码库,这里封装了所有与SWMM交互的模块和函数。- 例如,
nodes.py
,links.py
等文件分别处理节点和链接相关的操作。
- 例如,
.gitattributes
,.git-blame-ignore-revs
: Git配置文件,用于控制版本控制行为。AUTHORS
,CHANGELOG.md
,CITATION.cff
,LICENSE.txt
: 作者信息、更新日志、引用格式和许可协议。setup.py
: 安装脚本,定义项目依赖和元数据,以便通过pip安装。requirements-dev.txt
,requirements.txt
: 分别列出开发和运行所需的第三方库列表。README.md
: 项目简介,包含快速入门指导。
2. 项目的启动文件介绍
在PySWMM中,并没有一个特定的“启动文件”,但有一个推荐的开始使用流程。通常,开发者或用户会从导入PySWMM库并在自己的脚本中调用其函数开始。以下是一个简单的示例启动流程:
from pyswmm import Simulation, Nodes, Links
with Simulation('path/to/your/model.inp') as sim:
node21 = Nodes(sim)["21"]
print(f"Invert Elevation: {node21.invert_elevation}")
link15 = Links(sim)['15']
print(f"Outlet Node ID: {link15.outlet_node}")
for step in sim:
if step % 100 == 0:
print(f"{sim.current_time} {sim.percent_complete:.2f}%"
f" Depth: {node21.depth}, Flow: {link15.flow}")
您的实际启动文件将是执行类似上述逻辑的Python脚本,确保替换 'path/to/your/model.inp'
为您的SWMM模型输入文件路径。
3. 项目的配置文件介绍
PySWMM本身不直接提供一个特定的配置文件模板,而是通过SWMM的.inp
输入文件来配置模型。.inp
文件是SWMM模型的核心配置,它包含了模拟区域的所有设定,包括子流域、节点、链接、时间步长、报告设置等。
SWMM 输入文件 (.inp) 结构简述:
- Project Info: 模型的基本信息,如名称、单位系统。
- Subcatchments: 定义每个汇水区的属性。
- Nodes: 描述下水道系统中的节点(如贮流井、溢流口)及其特性。
- Links: 定义连接不同节点的管道和其他连接件。
- Pumps / Orifices / Weirs: 特殊连接件如泵、孔口、堰的详细参数。
- Pollutants: 如果模型考虑污染,则定义污染物信息。
- Hydraulics / Hydrology: 控制模拟的水力学和水文参数。
- Options: 包括模拟选项和输出报告设置。
- Report: 输出报告的细节设置。
- Controls: 控制规则,描述在模拟过程中的动态调整。
要使用PySWMM,您需要准备或编辑这样的.inp
文件,然后在Python脚本中指定该文件路径以启动模拟。
以上就是PySWMM项目的简单介绍,包括目录结构、启动基本流程,以及SWMM模型特有的配置文件.inp
的简述。通过遵循这些指导,您可以迅速开始利用PySWMM进行高效的水力模型分析和仿真。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5