DeepStream 服务库 (DSL) 使用教程
1. 项目介绍
DeepStream 服务库 (DSL) 是一个基于 NVIDIA® DeepStream SDK 的开源项目,旨在简化复杂的流处理管道的开发。DSL 将 NVIDIA® DeepStream 参考应用程序重新构想为一个共享库,提供了一系列的 DeepStream 管道服务。通过 DSL,开发者可以轻松构建、播放和动态修改 NVIDIA® DeepStream 管道,从而实现实时视频分析和多传感器处理。
DSL 的核心功能包括:
- 提供简单直观的 API 用于构建、播放和动态修改 DeepStream 管道。
- 支持多种源组件(如 CSI 源、V4L2 源、URI 源等)和多种输出组件(如窗口渲染、文件录制、RTSP 流等)。
- 支持动态添加和移除源、分支和输出组件,实现动态管道管理。
- 提供丰富的对象检测事件 (ODE) 服务,支持基于检测事件的自动化操作。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- NVIDIA® DeepStream SDK
- GStreamer
- Python 3.x
2.2 安装 DSL
首先,克隆 DSL 项目到本地:
git clone https://github.com/prominenceai/deepstream-services-library.git
cd deepstream-services-library
然后,根据项目文档中的说明进行编译和安装:
make
sudo make install
2.3 快速启动示例
以下是一个简单的 Python 示例,展示如何使用 DSL 创建一个基本的 DeepStream 管道:
from dsl import *
# 创建一个 CSI 源
retval = dsl_source_csi_new('my-source', width=1280, height=720, fps_n=30, fps_d=1)
# 创建一个主推理引擎
retval += dsl_infer_gie_primary_new('my-pgie', 'path_to_config_file', 'path_to_model_engine', interval=0)
# 创建一个多源分屏器
retval += dsl_tiler_new('my-tiler', width=1280, height=720)
# 创建一个屏幕显示组件
retval += dsl_osd_new('my-osd', text_enabled=True, clock_enabled=True, bbox_enabled=True, mask_enabled=False)
# 创建一个窗口渲染组件
retval += dsl_sink_window_egl_new('my-window-sink', width=1280, height=720)
# 检查组件创建是否成功
if retval != DSL_RESULT_SUCCESS:
print("组件创建失败")
exit(1)
# 将组件添加到新管道
retval = dsl_pipeline_new_component_add_many('my-pipeline', ['my-source', 'my-pgie', 'my-tiler', 'my-osd', 'my-sink', None])
# 播放管道
retval = dsl_pipeline_play('my-pipeline')
if retval != DSL_RESULT_SUCCESS:
print("管道播放失败")
exit(1)
# 运行主循环
dsl_main_loop_run()
# 清理资源
dsl_delete_all()
3. 应用案例和最佳实践
3.1 智能视频分析
DSL 可以用于构建智能视频分析系统,通过结合多种源和推理引擎,实现对视频流的实时分析。例如,可以创建一个包含多个 RTSP 源和多个推理引擎的管道,用于检测和跟踪视频中的对象。
3.2 动态管道管理
DSL 支持动态添加和移除源、分支和输出组件,适用于需要灵活调整管道配置的应用场景。例如,可以根据检测到的对象类型动态调整管道的推理引擎配置。
3.3 对象检测事件自动化
DSL 提供了丰富的对象检测事件 (ODE) 服务,可以用于自动化处理检测事件。例如,可以在检测到特定对象时自动启动录制或发送通知。
4. 典型生态项目
4.1 NVIDIA® DeepStream SDK
DSL 是基于 NVIDIA® DeepStream SDK 构建的,DeepStream SDK 是一个完整的流分析工具包,适用于基于 AI 的视频和图像理解以及多传感器处理。
4.2 GStreamer
DSL 使用 GStreamer 作为其底层框架,GStreamer 是一个极其强大和灵活的流媒体应用程序框架。
4.3 OpenCV
DSL 支持与 OpenCV 集成,可以通过 OpenCV 处理从 DeepStream 管道中提取的帧数据。
通过这些生态项目的结合,DSL 可以构建出功能强大且灵活的流处理系统,适用于各种复杂的应用场景。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00